DOI QR코드

DOI QR Code

Bearing capacity of strip footings on unsaturated soils under combined loading using LEM

  • Afsharpour, Siavash (Department of Civil Engineering, Faculty of Engineering, University of Guilan) ;
  • Payan, Meghdad (Department of Civil Engineering, Faculty of Engineering, University of Guilan) ;
  • Chenari, Reza Jamshidi (Department of Civil Engineering, Faculty of Engineering, University of Guilan) ;
  • Ahmadi, Hadi (Department of Civil Engineering, Faculty of Engineering, University of Guilan) ;
  • Fathipour, Hessam (Department of Civil Engineering, Faculty of Engineering, University of Guilan)
  • 투고 : 2021.08.30
  • 심사 : 2022.10.20
  • 발행 : 2022.10.25

초록

Bearing capacity of shallow foundations is often determined for either dry or saturated soils. In some occasions, foundations may be subjected to external loading which is inclined and/or eccentric. In this study, the ultimate bearing capacity of shallow foundations resting on partially saturated coarse-grained cohesionless and fine-grained cohesive soils subjected to a wide range of combined vertical (V) - horizontal (H) - moment (M) loadings is rigorously evaluated using the well-established limit equilibrium method. The unified effective stress approach as well as the suction stress concept is effectively adopted so as to simulate the behaviour of the underlying unsaturated soil medium. In order to obtain the bearing capacity, four equilibrium equations are solved by adopting Coulomb failure mechanism and Bishop effective stress concept and also considering a linear variation of the induced matric suction beneath the foundation. The general failure loci of the shallow foundations resting on unsaturated soils at different hydraulic conditions are presented in V - H - M spaces. The results indicate that the matric suction has a marked influence on the bearing capacity of shallow foundations. In addition, the effect of induced suction on the ultimate bearing capacity of obliquely-loaded foundations is more pronounced than that of the eccentrically-loaded footings.

키워드

참고문헌

  1. Bahmani Tajani, Sh., Fathipour, H., Payan, M., Jamshidi Chenari, R. and Senetakis, K. (2022), "Temperature-dependent lateral earth pressures in partially saturated backfills" Eur. J. Environ. Civil Eng., https://doi.org/10.1080/19648189.2022.2125911.
  2. Bishop, A. (1959), The Principal of Effective Stress. Teknisk Ukeblad.
  3. Conti, R. (2018), "Simplified formulas for the seismic bearing capacity of shallow strip foundations", Soil Dyn. Earthq. Eng., 104, 64-74. https://doi.org/10.1016/j.soildyn.2017.09.027.
  4. Costa, Y.D., Cintra, J.C. and Zornberg, J.G. (2003), "Influence of matric suction on the results of plate load tests performed on a lateritic soil deposit", Geotech. Test. J., 26(2), 219-227. https://doi.org/ 10.1520/GTJ11326J.
  5. Cure, E., Sadoglu, E., Turker, E. and Uzuner, B.A. (2014), "Decrease trends of ultimate loads of eccentrically loaded model strip footings close to a slope", Geomech. Eng., 6(5), 469-485. https://doi.org/10.12989/gae.2014.6.5.469.
  6. Dastpak, P., Abrishami, S., Sharifi, S. and Tabaroei, A. (2020), "Experimental study on the behavior of eccentrically loaded circular footing model resting on reinforced sand", Geotext. Geomembranes, 48(5), 647-654. https://doi.org/10.1016/j.geotexmem.2020.03.009.
  7. Di Matteo, L., Valigi, D. and Ricco, R. (2013), "Laboratory shear strength parameters of cohesive soils: variability and potential effects on slope stability", Bull. Eng. Geol. Environ., 72(1), 101-106. https://doi.org/10.1007/s10064-013-0459-6.
  8. Dixit, M.S. and Patil, K.A. (2013), "Experimental estimate of Nγ values and corresponding settlements for square footings on finite layer of sand", Geomech. Eng., 5(4), 363-377. https://doi.org/10.12989/gae.2013.5.4.363.
  9. Fathipour, H., Payan, M. and Chenari, R.J. (2021a), "Limit analysis of lateral earth pressure on geosynthetic-reinforced retaining structures using finite element and second-order cone programming", Comput. Geotech., 134, 104119. https://doi.org/10.1016/j.compgeo.2021.104119.
  10. Fathipour, H., Payan, M., Chenari, R.J. and Fatahi, B. (2022a), "General failure envelope of eccentrically and obliquely loaded strip footings resting on an inherently anisotropic granular medium", Comput. Geotech., 146, 104734. https://doi.org/10.1016/j.compgeo.2022.104734
  11. Fathipour, H., Payan, M., Safardoost Siahmazgi, A., Jamshidi Chenari, R. and Senetakis, K. (2022b), "Numerical study on the bearing capacity of strip footing resting on partially saturated soil subjected to combined vertical-horizontal-moment loading", Eur. J. Environ. Civil Eng., 1-34.
  12. Fathipour, H., Payan, M., Jamshidi Chenari, R. and Senetakis, K. (2021b), "Lower bound analysis of modified pseudo-dynamic lateral earth pressures for retaining wall-backfill system with depth-varying damping using FEM-Second order cone programming", Int. J. Numer. Anal. Method. Geomech., 45(16), 2371-2387. https://doi.org/10.1002/nag.3269
  13. Fathipour, H., Siahmazgi, A.S., Payan, M. and Chenari, R.J. (2020), "Evaluation of the lateral earth pressure in unsaturated soils with finite element limit analysis using second-order cone programming", Comput. Geotech., 125, 103587. https://doi.org/10.1016/j.compgeo.2020.103587
  14. Fathipour, H., Siahmazgi, A. S., Payan, M., Veiskarami, M. and Jamshidi Chenari, R. (2021c), "Limit analysis of modified pseudodynamic lateral earth pressure in anisotropic frictional medium using finite-element and second-order cone programming", Int. J. Geomech., 21(2), 04020258. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001924.
  15. Fathipour, H., Tajani, S.B., Payan, M., Chenari, R.J. and Senetakis, K. (2022c), "Influence of transient flow during infiltration and isotropic/anisotropic matric suction on the passive/active lateral earth pressures of partially saturated soils", Eng. Geol., 106883.
  16. Fathipour, H., Tajani, S.B., Payan, M., Chenari, R.J. and Senetakis, K. (2023), "Impact of transient infiltration on the ultimate bearing capacity of obliquely-eccentrically loaded strip footings on partially saturated soils", Int. J. Geomech., https://doi.org/10.1061/IJGNAI/GMENG-7463.
  17. Fredlund, D.G., Morgenstern, N.R. and Widger, R.A. (1978), "The shear strength of unsaturated soils", Can. Geotech. J., 15(3), 313-321. https://doi.org/10.1139/t78-029.
  18. Hansen, J.B. (1970), "A revised and extended formula for bearing capacity", Danish Geotech. Instit., Bull. No. 28, 5-11
  19. Jin, L., Zhang, H. and Feng, Q. (2021), "Ultimate bearing capacity of strip footing on sands under inclined loading based on improved radial movement optimization", Eng. Optim., 53(2), 277-299. https://doi.org/10.1080/0305215X.2020.1717483.
  20. Keawsawasvong, S. (2021), "Bearing capacity of conical footings on clays considering combined effects of anisotropy and non-homogeneity", Ship. Offshore Struct., 1-12.
  21. Keawsawasvong, S. and Lai, V.Q. (2021), "End bearing capacity factor for annular foundations embedded in clay considering the effect of the adhesion factor", Int. J. Geosynthetics Ground Eng., 7(1), 1-10. https://doi.org/10.1007/s40891-020-00247-6
  22. Keawsawasvong, S., Thongchom, C. and Likitlersuang, S. (2021), "Bearing capacity of strip footing on Hoek-Brown rock mass subjected to eccentric and inclined loading", T. Infrastruct. Geotech., 8(2), 189-202. https://doi.org/10.1007/s40515-020-00133-8
  23. Khalili, N. and Khabbaz, M.H. (1998), "A unique relationship for X for the determination of the shear strength of unsaturated soils", Geotechnique, 48(5), 681-687. https://doi.org/10.1680/geot.1998.48.5.681.
  24. Khatri, V.N. and Kumar, J. (2009), "Bearing capacity factor N for a rough conical footing", Geomech. Eng., 1(3), 205-218. https://doi.org/10.12989/gae.2009.1.3.205.
  25. Krabbenhoft, S., Damkilde, L. and Krabbenhoft, K. (2012), "Lower-bound calculations of the bearing capacity of eccentrically loaded footings in cohesionless soil", Can. Geotech. J., 49(3), 298-310. https://doi.org/10.1139/t11-103.
  26. Krabbenhoft, S., Damkilde, L. and Krabbenhoft, K. (2014), "Bearing capacity of strip footings in cohesionless soil subject to eccentric and inclined loads", Int. J. Geomech., 14(3), 04014003. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000332.
  27. Loukidis, D., Chakraborty, T. and Salgado, R. (2008), "Bearing capacity of strip footings on purely frictional soil under eccentric and inclined loads", Can. Geotech. J., 45(6), 768-787. https://doi.org/10.1139/T08-015.
  28. Lu, N. and Likos, W.J. (2004), Unsaturated Soil Mechanics, John Wiley&Sons. Inc., Hoboken, USA.
  29. Lu, N. and Likos, W.J. (2006), "Suction stress characteristic curve for unsaturated soil", J. Geotech. Geoenviron. Eng., 132(2), 131-142. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131).
  30. Lu, N., Godt, J.W. and Wu, D.T. (2010), "A closed-form equation for effective stress in unsaturated soil", Water Resour. Res., 46(5). https://doi.org/10.1029/2009WR008646.
  31. Meyerhof, G. (1953), "The bearing capacity of foundations under eccentric and inclined loads", Proceedings of the. 3rd Int. Conf. on SMFE.
  32. Meyerhof, G.G. (1963), "Some recent research on the bearing capacity of foundations', Can. Geotech. J., 1(1), 16-26. https://doi.org/10.1139/t63-003.
  33. Nouzari, M.A., Chenari, R.J., Payan, M. and Pishgar, F. (2021), "Pseudo-static seismic bearing capacity of shallow foundations in unsaturated soils employing limit equilibrium method", Geotech. Geol. Eng., 39(2), 943-956. https://doi.org/10.1007/s10706-020-01535-8.
  34. Nova, R. and Montrasio, L. (1991), "Settlements of shallow foundations on sand", Geotechnique, 41(2), 243-256. https://doi.org/10.1680/geot.1991.41.2.243.
  35. Oh, W.T. and Vanapalli, S.K. (2011), "Modelling the applied vertical stress and settlement relationship of shallow foundations in saturated and unsaturated sands", Can. Geotech. J., 48(3), 425-438. https://doi.org/10.1139/T10-079.
  36. Okamura, M., Mihara, A., Takemura, J. and Kuwano, J. (2002), "Effects of footing size and aspect ratio on the bearing capacity of sand subjected to eccentric loading", Soils Found., 42(4), 43-56. https://doi.org/10.3208/sandf.42.4_43.
  37. Oloo, S.Y., Fredlund, D.G. and Gan, J.K. (1997), "Bearing capacity of unpaved roads", Can. Geotech. J., 34(3), 398-407. https://doi.org/10.1139/t96-084.
  38. Payan, M., Fathipour, H., Hosseini, M., Chenari, R.J. and Shiau, J. S. (2022), "Lower bound finite element limit analysis of geo-structures with non-associated flow rule", Comput. Geotech., 147, 104803. https://doi.org/10.1016/j.compgeo.2022.104803
  39. Pham, Q.N., Ohtsuka, S., Isobe, K. and Fukumoto, Y. (2020), "Limit load space of rigid footing under eccentrically inclined load", Soils Found., 60(4), 811-824. https://doi.org/10.1016/j.sandf.2020.05.004.
  40. Rojas, J.C., Salinas, L.M. and Sejas, C. (2007), "Plate-load tests on an unsaturated lean clay", Experimental unsaturated soil mechanics (pp. 445-452). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69873-6_44.
  41. Safardoost Siahmazgi, A., Fathipour, H., Jamshidi Chenari, R., Veiskarami, M. and Payan, M. (2022), "Evaluation of the pseudo-dynamic bearing capacity of surface footings on cohesionless soils using finite element lower bound limit analysis", Geomech. Geoeng., 17(3), 765-777. https://doi.org/10.1080/17486025.2021.1889686
  42. Taiebat, H.A. and Carter, J.P. (2000), "Numerical studies of the bearing capacity of shallow foundations on cohesive soil subjected to combined loading", Geotechnique, 50(4), 409-418. https://doi.org/10.1680/geot.2000.50.4.409
  43. Tang, C., Phoon, K.K. and Toh, K.C. (2015), "Effect of footing width on Nγ and failure envelope of eccentrically and obliquely loaded strip footings on sand", Can. Geotech. J., 52(6), 694-707. https://doi.org/10.1139/cgj-2013-0378.
  44. Tang, Y., Taiebat, H.A. and Senetakis, K. (2017), "Effective stress based bearing capacity equations for shallow foundations on unsaturated soils", J. Geoeng., 12(2), 59-64. https://doi.org/10.6310/jog.2017.12(2).2.
  45. Tang, Y., Taiebat, H.A. and Russell, A.R. (2017), "Bearing capacity of shallow foundations in unsaturated soil considering hydraulic hysteresis and three drainage conditions", Int. J. Geomech., 17(6), 04016142. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000845.
  46. Terzaghi, K. (1943), Theoretical Soil Mechanics, johnwiley and sons. New York, NY, USA.
  47. Turedi, Y., Emirler, B., Ornek, M. and Yildiz, A. (2019), "Determination of the bearing capacity of model ring footings: Experimental and numerical investigations", Geomech. Eng., 18(1), 29-39. https://doi.org/10.12989/gae.2019.18.1.029.
  48. Ukritchon, B., Whittle, A.J. and Sloan, S.W. (1998), "Undrained limit analyses for combined loading of strip footings on clay", J. Geotech. Geoenviron. Eng., 124(3), 265-276. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:3(265).
  49. Ukritchon, B. and Keawsawasvong, S. (2017), "Unsafe error in conventional shape factor for shallow circular foundations in normally consolidated clays", J. Geotech. Geoenviron. Eng., 143(6), 02817001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001670
  50. Ukritchon, B. and Keawsawasvong, S. (2020), "Undrained lower bound solutions for end bearing capacity of shallow circular piles in non-homogeneous and anisotropic clays", Int. J. Numer. Anal. Method. Geomech., 44(5), 596-632. https://doi.org/10.1002/nag.3018
  51. Uncuoglu, E. (2015), "The bearing capacity of square footings on a sand layer overlying clay", Geomech. Eng., 9(3), 287-311. https://doi.org/10.12989/gae.2015.9.3.287.
  52. Vahedifard, F. and Robinson, J.D. (2016), "Unified method for estimating the ultimate bearing capacity of shallow foundations in variably saturated soils under steady flow", J. Geotech. Geoenviron. Eng., 142(4), 04015095. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001445.
  53. Vanapalli, S.K. and Mohamed, F.M. (2013), "Bearing capacity and settlement of footings in unsaturated sands", Int. J. Geomate, 5(1), 595-604.
  54. Vesic, A.S. (1973), "Analysis of ultimate loads of shallow foundations", J. Soil Mech. Found. Division, 99(1), 45-73. https://doi.org/10.1061/JSFEAQ.0001846.
  55. Vesic, A.S. (1975), Bearing Capacity of Shallow Foundations, Van Nostrand Reinhold, New York, USA
  56. Vo, T. and Russell, A.R. (2016), "Bearing capacity of strip footings on unsaturated soils by the slip line theory", Comput. Geotech., 74, 122-131. https://doi.org/10.1016/j.compgeo.2015.12.016.
  57. Wang, Y. and Akeju, O.V. (2016), "Quantifying the cross-correlation between effective cohesion and friction angle of soil from limited site-specific data", Soils Found., 56(6), 1055-1070. https://doi.org/10.1016/j.sandf.2016.11.009.
  58. Wu, G., Zhang, R., Zhao, M. and Zhou, S. (2020), "Undrained stability analysis of eccentrically loaded strip footing lying on layered slope by finite element limit analysis", Comput. Geotech., 123, 103600. https://doi.org/10.1016/j.compgeo.2020.103600.
  59. Wuttke, F., Kafle, B., Lins, Y. and Schanz, T. (2013), "Macroelement for statically loaded shallow strip foundation resting on unsaturated soil", Int. J. Geomech., 13(5), 557-564. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000254.
  60. Xu, Y. (2004), "Bearing capacity of unsaturated expansive soils", Geotech. Geol. Eng., 22(4), 611-625. https://doi.org/10.1023/B:GEGE.0000047043.29898.17.
  61. Yahia-Cherif, H., Mabrouki, A., Benmeddour, D. and Mellas, M. (2017), "Bearing capacity of embedded strip footings on cohesionless soil under vertical and horizontal loads", Geotech. Geol. Eng., 35(2), 547-558. http://.doi.org/10.1007%2Fs10706-016-0124-5. https://doi.org/10.1007%2Fs10706-016-0124-5
  62. Yodsomjai, W., Keawsawasvong, S. and Lai, V.Q. (2021), "Limit analysis solutions for bearing capacity of ring foundations on rocks using Hoek-Brown failure criterion", Int. J. Geosynthetics Ground Eng., 7(2), 1-10. https://doi.org/10.1007/s40891-020-00247-6
  63. Yuan, S. and Du, J. (2018), "Effective stress-based upper bound limit analysis of unsaturated soils using the weak form quadrature element method", Comput. Geotech., 98, 172-180. https://doi.org/10.1016/j.compgeo.2018.02.008.
  64. Yuan, S. and Du, J. (2020), "A lower-bound formulation for unsaturated soils", Geotechnique, 70(2), 123-137. https://doi.org/10.1680/jgeot.18.P.103.
  65. Zheng, G., Zhao, J., Zhou, H. and Zhang, T. (2019), "Ultimate bearing capacity of strip footings on sand overlying clay under inclined loading', Comput. Geotech., 106, 266-273. https://doi.org/10.1016/j.compgeo.2018.11.003.