DOI QR코드

DOI QR Code

Acoustical Dynamic Response Analysis of a Gas Turbine Combustor Using a Sine-Sweep Forcing Model

사인-스윕 가진 모델을 통한 가스터빈 연소기의 음향 동적 반응 해석

  • Son, Juchan (Department of Mechanical Engineering, Gangneung-Wonju National University) ;
  • Kim, Daesik (Department of Mechanical Engineering, Gangneung-Wonju National University)
  • Received : 2022.05.06
  • Accepted : 2022.08.07
  • Published : 2022.08.31

Abstract

In the current study, in order to understand the dynamic response characteristics of the system according to the external acoustic forcing, a numerical approach was developed by adding an sign-sweep forcing function to the existing network model. Through this model, the sensitivity of frequency and pressure amplitude changes according to system parameters such as the physical dimensions and boundary conditions of the target combustor was analyzed in a wide frequency range. Analysis results of dynamic response characteristics of the target combustor are shown that the frequency regime with high dynamic pressure response was similar to the instability frequency range measured in the same combustor, and in particular, the response of the system depends greatly on the location of the acoustic forcing source term.

본 연구에서는 외부 음향장 가진에 따른 시스템의 동적 응답 특성을 파악하기 위하여 기존의 네트워크 모델에 스피커를 통한 외부 사인-스윕 가진 기능을 추가한 수치해석적 모델이 개발되었다. 본 모델을 통하여 대상 연소기의 물리적 치수 및 경계조건과 같은 시스템 매개변수에 따른 주파수 및 압력 진폭 변화의 민감도를 넓은 주파수 영역에서 분석하였다. 대상 연소기의 가진 응답 특성 분석 결과, 높은 동압 반응을 보이는 주파수 영역은 동일 연소기에서 계측된 불안정 범위와 유사하였으며, 특히 음향 가진 소스항의 위치에 따라 시스템의 반응이 크게 의존하는 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 2021년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원(20206710100030)을 받아 수행된 연구 결과입니다.

References

  1. Merk, H.J., "Analysis of Heat-driven Oscillations of Gas Flows," Applied Scientific Research, Vol. 7, No. 3, pp. 192-204, 1958. https://doi.org/10.1007/BF03184648
  2. Bloxsidge, G.J., Dowling, A.P. and Langhorne, P.J., "Reheat buzz: an Acoustically Coupled Combustion Instability. Part 2. Theory," Journal of Fluid Mechanics, Vol. 193, No. 1, pp. 445-473, 1988. https://doi.org/10.1017/S0022112088002216
  3. Poinsot, T., "Prediction and Control of Combustion Instabilities in Real Engines," Proceedings of the Combustion Institute, Vol. 36, No. 1, pp. 1-28, 2018.
  4. Mongia, H.C., Held, T.J., Hsiao, G.C. and Pandalai, R.P., "Challenges and Progress in Controlling Dynamics in Gas Turbine Combustors," Journal of Propulsion and Power, Vol. 19, No. 5, pp. 822-829, 2003. https://doi.org/10.2514/2.6197
  5. Cohen, J.M., Hibshman, J.R., Proscia, W., Rosfjord, T.J., Wake, B.E., McVey, J.B. and Breisacher, K., "Experimental Replication of an Aeroengine Combustion Instability," ASME TURBOEXPO 2000, Munich, Germany, GT-0093, May 2000.
  6. Schuermans, B., Guethe, F., Pennell, D., Guyot, D. and Paschereit, C.O., "Thermoacoustic Modeling of a Gas Turbine Using Transfer Functions Measured Under Full Engine Pressure," Journal of Engineering Gas Turbines Power, Vol. 132, No. 11, 11503, 2010.
  7. Kaufmann, A., Nicoud, F. and Poinsot, T. "Flow Forcing Techniques for Numerical Simulation of Combustion Instabilities," Combustion and Flame, Vol. 131, No. 4, pp. 371-385, 2002. https://doi.org/10.1016/S0010-2180(02)00419-4
  8. Son, J., Hong, S., Hwang, J., Kim, M.K. and Kim, D., "Acoustic Modeling in a Gas Turbine Combustor with Backflow using a Network Approach," Journal of the Korean Society of Propulsion Engineers, Vol. 25, No. 5, pp. 18-26, 2021. https://doi.org/10.6108/KSPE.2021.25.5.018
  9. Son, J. and Kim, D., "Combustion Instability Modeling in a Reverse-Flow Gas Turbine Combustor using a Network Model," Journal of the Korean Society of Propulsion Engineers, Vol. 25, No. 5, pp. 18-26, 2021. https://doi.org/10.6108/KSPE.2021.25.5.018
  10. Pyo, Y., Park, H., Jung, S. and Kim, D., "Acoustic Field Analysis using 1D Network Model in an Aero Gas Turbine Combustor," Journal of the Korean Society of Propulsion Engineers, Vol. 23, No. 2, pp. 38-45, 2019. https://doi.org/10.6108/KSPE.2019.23.2.038
  11. Ahn, B., Lee, J., Jung, S. and Kim, K. T., "Low-Frequency Combustion Instabilities of an Airblast Swirl Injector in a Liquid-Fuel Combustor," Combustion and Flame, Vol. 196, pp. 424-438, 2018. https://doi.org/10.1016/j.combustflame.2018.06.031
  12. Joo, S., Kwak, S., Yoon, Y., Hong, S. and Kim, D., "Experimental and numerical analysis of effect of fuel line length on combustion instability for H2/CH4 gas turbine combustor," International Journal of Hydrogen Energy, Vol. 46, No. 76, pp. 119-131, 2021. https://doi.org/10.1016/j.ijhydene.2020.09.265
  13. Dowling, A.P., "Modeling and Control of Combustion Oscillations," ASME Turbo Expo 2005, Nevada, U.S.A., pp. 331-341, June 2005.
  14. Tran, N., Ducruix, S. and Schuller, T., "Damping Combustion Instabilities with Perforates at the Premixer Inlet of a Swirled Burner," Proceedings of the Combustion Institute, Vol. 32, No. 2, pp. 2917-2924, 2009. https://doi.org/10.1016/j.proci.2008.06.123
  15. Lahiri, C. and Bake, F., "A Review of Bias Flow Liners for Acoustic Damping in Gas Turbine Combustors," Journal of Sound and Vibration, Vol. 400, No. 21, pp. 564-605, 2017. https://doi.org/10.1016/j.jsv.2017.04.005
  16. Bauer, A.B., "Impedance Theory and Measurements on Porous Acoustic Liners," Journal of Aircraft, Vol. 14, No. 8, pp. 720-728, 1977. https://doi.org/10.2514/3.58844
  17. Kim, D., Jung, S. and Park, H., "Design of Acoustic Liner in Small Gas Turbine Combustor Using One-Dimensional Impedance Models," Journal of Engineering for Gas Turbines and Power, Vol. 140, No. 12, 2018.