DOI QR코드

DOI QR Code

수분노화된 금속/KClO4 산화제 기반 고에너지 물질의 화학반응역학 변화를 유발하는 주요인자 확인

Key Factors that can Affect the Chemical Reaction Kinetics of Aged Metals/KClO4-based Energetic Materials

  • Oh, Juyoung (School of Aerospace Engineering, Seoul National University) ;
  • Yoh, Jai-ick (School of Aerospace Engineering, Seoul National University)
  • 투고 : 2022.06.03
  • 심사 : 2022.07.12
  • 발행 : 2022.08.31

초록

고에너지 물질의 노화로 인하여 성능 감소를 최소화하기 위해 현재 노화 연구가 활발하게 진행되고 있지만, 개별 재료에 집중한 연구가 대부분이며 일반적인 노화 메커니즘 파악에는 미흡한 상태이다. 본 연구에서는 이러한 맹점을 해결하기 위해서 금속(W, Ti, Zr)과 KClO4 산화제를 기반으로 하는 고에너지 물질에 대하여 열/표면 분석을 수행하였으며, 이를 통해 고습도-고온 조건하에 노화된 해당 물질에서 보인 열역학적 특성 및 화학반응인자의 변화를 확인하였다. 그 결과, 금속 원소의 상태가 화학반응인자의 상당한 변화를 결정하였다. 즉, 금속의 산화 및 산화막 두께의 증가는 활성화에너지 평균값의 상승을 초래하였으며, 금속 원자의 전기음성도는 활성화에너지 값의 표준편차의 변화를 이끌어냈다.

To minimize such loss due to aging, research on energetic materials is being actively conducted though, there are difficulties in identifying the comprehensive aging mechanisms as they focused on the respective materials. In this study, thermal and surface analysis were performed on energetic materials composed of metals(W, Ti, and Zr) and KClO4 oxidizer to solve the blind spots of this aging study. It was newly found that the metals in the hygrothermally aged compounds can cause significant changes in performance. For example, the growth in the thickness of the oxide film on the metals led to an increase in the average value of activation energy(Eα). In addition, the standard deviation of Eα tends to dependent on the type of metal, which is due to the difference in electronegativity.

키워드

과제정보

본 논문은 2022년도 BK21플러스 사업이며, 또한 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(NRF-2020R1F1A1072007, NRF-2021M1A3B8079020).

참고문헌

  1. Oh, J., Ambekar, A. and Yoh, J.J., "The hygrothermal aging effects of titanium hydride potassium perchlorate for pyrotechnic combustion," Thermochimica Acta, Vol. 665, pp. 102-110, 2018. https://doi.org/10.1016/j.tca.2018.05.019
  2. Oh, J., Jang, S.G. and Yoh, J.J., "Towards understanding the effects of heat and humidity on ageing of a NASA standard pyrotechnic igniter," Scientific Reports, Vol. 9, No. 1, pp. 1-12, 2019. https://doi.org/10.1038/s41598-018-37186-2
  3. Gnanaprakash, K., Lee, Y. and Yoh, J.J., "Investigation of aging induced processes on thermo-kinetic and combustion characteristics of tungsten pyrotechnic delay composition," Combustion and Flame, Vol. 228, pp. 114-127, 2021. https://doi.org/10.1016/j.combustflame.2021.01.036
  4. Han, B.H., Kim, Y., Jang, S., Yoo, J. and Yoh, J.J., "Thermochemical characterization of Zr/Fe2O3 pyrotechnic mixture under natural aging conditions," Journal of Applied Physics, Vol. 126, No. 10, pp. 105113, 2019. https://doi.org/10.1063/1.5096803
  5. Oh, J. and Yoh, J.J., "Insights into aging mechanism of Ti-metal based pyrotechnics and changes in thermo-kinetic characteristics," Proceedings of the Combustion Institute, Vol. 38, No. 3, pp. 4441-4449, 2021. https://doi.org/10.1016/j.proci.2020.08.040
  6. Naseem, H., Yerra, J., Murthy, H. and Ramakrishna, P.A., "Ageing studies on AP/HTPB based composites solid propellants," Energetic Materials Frontiers, Vol. 2, No. 2, pp. 111-124, 2021. https://doi.org/10.1016/j.enmf.2021.02.001
  7. Kishore, K., Verneker, V.P. and Prasad, G., "Mechanism of ageing of composite solid propellants," Combustion and Flame, Vol. 36, pp. 79-85, 1979. https://doi.org/10.1016/0010-2180(79)90047-6
  8. Tompa, A.S. and William F.B. Jr. "Microcalorimetry and DSC study of the compatibility of energetic materials," Thermochimica Acta, Vol. 367-368, pp. 433-441, 2001. https://doi.org/10.1016/S0040-6031(00)00674-2
  9. Kim, Y., Ambekar, A. and Yoh, J.J., "Toward understanding the aging effect of energetic materials via advanced isoconversional decomposition kinetics," Journal of Thermal Analysis and Calorimetry, Vol. 133, No. 1, pp. 737-744, 2018. https://doi.org/10.1007/s10973-017-6778-2
  10. Sinha, S., Piekiel, N.W., Smith, G.L. and Morris, C.J., "Investigating aging effects for porous silicon energetic materials," Combustion and Flame, Vol. 181, pp. 164-171, 2017. https://doi.org/10.1016/j.combustflame.2017.03.015
  11. Sippel, T.R., Timothee, L.P. and Steven, F.S., "Combustion of nanoaluminum and water propellants: Effect of equivalence ratio and safety/aging characterization," Propellants, Explosives, Pyrotechnics, Vol. 38, No. 1, pp. 56-66, 2013. https://doi.org/10.1002/prep.201200143
  12. Nishiwaki, Y., Akiyoshi, M., Matsunaga, T. and Kumasaki, M., "Effect of deterioration products in moisture on the thermal behavior of ammonium perchlorate/magnesium mixture," Sci. Tech. Energetic Materials, Vol. 79, No. 5, pp. 151-155, 2018.
  13. Han, B., Gnanaprakash, K., Park, Y. and Yoh, J.J., "Understanding the effects of hygrothermal aging on thermo-chemical behaviour of Zr-Ni based pyrotechnic delay composition," Fuel, Vol. 281, pp. 118776, 2020. https://doi.org/10.1016/j.fuel.2020.118776
  14. Nie, H.Q., Chan, H.Y., Pisharath, S. and Hng, H.H., "Combustion characteristic and aging behavior of bimetal thermite powders," Defence Technology, Vol. 17, No. 3, pp. 755-762, 2021. https://doi.org/10.1016/j.dt.2020.05.009
  15. Cerri, E. and Barbagallo, S., "The influence of high temperature exposure on aging kinetics of a die cast magnesium alloy," Materials Letters, Vol. 56, No. 5, pp. 716-720, 2002. https://doi.org/10.1016/S0167-577X(02)00601-8
  16. Banhart, J., Chang, C.S.T., Liang, Z., Wanderka, N., Lay, M.D. and Hill, A.J., "Natural aging in Al Mg Si alloys-a process of unexpected complexity," Advanced Engineering Materials, Vol. 12, No. 7, pp. 559-571, 2010. https://doi.org/10.1002/adem.201000041
  17. Friedman, H.L., "Kinetics of thermal degradation of char forming plastics from thermogravimetry. Application to a phenolic plastic," Journal of Polymer Science Part C: Polymer Symposia, Vol. 6. No. 1., pp. 183-195, 1964. https://doi.org/10.1002/polc.5070060121
  18. Vyazovkin, S., Burnham, A.K., Criado, J.M., Perez-Maqueda, L.A., Popescu, C. and Sbirrazzuoli, N., "ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data," Thermochimica Acta, Vol. 520, No. 1-2, pp. 1-19, 2011. https://doi.org/10.1016/j.tca.2011.03.034
  19. American Institute of Aeronautics and Astronautics (AIAA), Criteria for explosive systems and devices on space and launch vehicles, 1st ed., AIAA, Reston, U.S.A., 2005.
  20. Lu, K.T. and Yang, C.C., "Thermal Analysis Studies on the Slow Propagation Tungsten Type Delay Composition System," Propellants, Explosives, Pyrotechnics: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials, Vol. 33, No. 5, pp. 403-410, 2008.
  21. Zhang, Y., Chen, M., Zhang, Z., Jiang, Z., Shangguan, W. and Einaga, H., "Simultaneously catalytic decomposition of formaldehyde and ozone over manganese cerium oxides at room temperature: Promotional effect of relative humidity on the MnCeOx solid solution," Catalysis Today, Vol. 327, pp. 323-333, 2019. https://doi.org/10.1016/j.cattod.2018.04.027
  22. Cheng, Z., Wu, W., Ji, P., Zhou, X., Liu, R. and Cai, J., "Applicability of Fraser-Suzuki function in kinetic analysis of DAEM processes and lignocellulosic biomass pyrolysis processes," Journal of Thermal Analysis and Calorimetry, Vol. 119, No. 2, pp. 1429-1438, 2015. https://doi.org/10.1007/s10973-014-4215-3