초록
낸드 플래시 메모리는 구조적으로 쓰기 전 지우기(Erase-Before-Write) 동작이 요구된다. 이것을 해결하기 위해서는 데이터 업데이트 동작이 빈번히 발생하는 페이지(Hot data page)를 구분하여 별도에 블록에 저장함으로 해결할 수 있으며 이러한 Hot data를 분류하는 기법을 핫 데이터 판단기법이라 한다. MHF(Multi Hash Function Framework)기법은 데이터 갱신요청의 빈도를 시스템 메모리에 기록하고 그 기록된 값이 일정 기준 이상일 때 해당 데이터 갱신요청을 Hot data로 판단한다. 하지만 데이터 갱신요청에 빈도만을 단순히 카운트하는 방법으로는 정확한 Hot data로 판단에 한계가 있다. 또한 데이터 갱신요청의 지속성을 판단 기준으로 하는 기법의 경우 갱신요청 사실을 시간 간격을 기준으로 순차적으로 기록한 뒤 Hot data로 판단하는 방법이다. 이러한 지속성을 기준으로 하는 방법의 경우 그 구현과 운용이 복잡한 단점이 있으며 갱신요청에 빈도를 고려하지 않는 경우 부정확하게 판단되는 문제가 있다. 본 논문은 데이터 갱신요청에 빈도와 지속성을 함께 고려한 경량화된 핫 데이터 판단기법을 제안한다.
Nand flash memory requires an Erase-Before-Write operation structurally. In order to solve this problem, it can be solved by classifying a page (hot data page) where data update operation occurs frequently and storing it in a separate block. The MHF (Multi Hash Function Framework) technique records the frequency of data update requests in the system memory, and when the recorded value exceeds a certain standard, the data update request is judged as hot data. However, the method of simply counting only the frequency of the data update request has a limit in judging it as accurate hot data. In addition, in the case of a technique that determines the persistence of a data update request, the fact of the update request is recorded sequentially based on a time interval and then judged as hot data. In the case of such a persistence-based method, its implementation and operation are complicated, and there is a problem of inaccurate judgment if frequency is not considered in the update request. This paper proposes a lightweight hot data determination technique that considers both frequency and persistence in data update requests.