DOI QR코드

DOI QR Code

Experimental analysis of damage in short-fiber-reinforced composite waste polyethylene terephthalate as a pile foundation material

  • Jang, Hongseok (Department of Architectural Engineering, Innovative research and education center for integrated bioactive materials-BK21 FOUR, Jeonbuk National University) ;
  • Seo, Segwan (Department of Research institution, ZIAN Co. Ltd.) ;
  • Cho, Daesung (Department of Research institution, ZIAN Co. Ltd.)
  • Received : 2022.04.20
  • Accepted : 2022.10.17
  • Published : 2022.10.10

Abstract

This study assessed the compressive and tensile strengths and modulus of elasticity of waste polyethylene terephthalate (PET) using the ASTM standard tests. In addition, short carbon and glass fibers were mixed with waste PET to examine the improvements in ductility and strength during compression. The bonding was examined via field-emission scanning electron microscopy. The strength degradation of the waste PET tested under UV was 40-50%. However, it had a compressive strength of 32.37 MPa (equivalent to that of concrete), tensile strength of 31.83 MPa (approximately ten times that of concrete), and a unit weight of 12-13 kN/m3 (approximately half that of concrete). A finite element analysis showed that, compared with concrete, a waste PET pile foundation can support approximately 1.3 times greater loads. Mixing reinforcing fibers with waste PET further mitigated this, thereby extending ductility. Waste PET holds excellent potential for use in foundation piles, especially while mitigating brittleness using short reinforcing fibers and avoiding UV degradation.

Keywords

Acknowledgement

This work is supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant, funded by the Ministry of Land, Infrastructure and Transport (Grant 1615011345).

References

  1. Ahmad, A.F., Razali, A.R., Razelan, I.S.M. and Hamizan, W.A.H.W. (2019), "Effect of waste polyethylene terephthalate (PET) on properties of road aggregate", Mater. Sci. Eng., IOP Publishing, 469(1), 012056, https://doi.org/10.1088/1757-899X/469/1/012056.
  2. American Chemistry Council, The Association of Plastic Recyclers (2018), United States National Postconsumer Plastic Bottle Recycling Report, https://plastics.americanchemistry.com/Reports-andPublications/2018-National-Post-Consumer-Plastics-BottleRecycling-Report.pdf (accessed 15 November 2020).
  3. ASTM D638-10 (2010), Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA, 2010. https://doi.org/10.1520/D0638-10.
  4. ASTM D695-10 (2010), Standard Test Method for Compressive Properties of Rigid Plastics, ASTM International, West Conshohocken, PA, 2010. https://doi.org/10.1520/D0695-10.
  5. Awaja, F. and Pavel, D. (2005), "Recycling of PET", Eur. Polym. J. 41(7), 1453-1477. https://doi.org/10.1016/j.eurpolymj.2005.02.005.
  6. Awoyera, P.O. and Adesina, A. (2020), "Plastic wastes to construction products: Status, limitations and future perspective", Case Stud. Constr. Mater. 12, e00330. https://doi.org/10.1016/j.cscm.2020.e00330.
  7. Back, Y.M., Shin, P.S., Kim, J.H., Park, H.S., Kwon, D.J. and Park, J.M. (2017), "Comparison of mechanical and interfacial properties of carbon fiber reinforced recycled PET composites with thermoforming temperature and time", Korean Soc. Compos. Mater. 30 (2017) 175-180. https://doi.org/10.7234/composres.2017.30.3.175.
  8. Bin, Y., Oishi, K., Yoshida, K. and Matsuo, M. (2004), "Mechanical properties of poly (ethylene terephthalate) estimated in terms of orientation distribution of crystallites and amorphous chain segments under simultaneous biaxially stretching", Polym. J. 36, 888-898. https://doi.org/10.1295/polymj.36.888.
  9. Cheng, J. and Liu, X. (2012), "Reliability analysis of steel cablestayed bridges including soli-pile interaction", Steel Compos. Struct., 13(2), 109-122. http://dx.doi.org/10.12989/scs.2012.13.2.109.
  10. Choi, Y.W., Moon, D.J., Chung, J.S. and Cho, S.K. (2005), "Effects of waste PET bottles aggregate on the properties of concrete", Cem. Concr. Res. 35(4), 776-781. https://doi.org/10.1016/j.cemconres.2004.05.014.
  11. Designerdata (2020), PET, https://designerdata.nl/materials/plastics/thermoplastics/polyethylene-terephthalate, (accessed 15 November 2020).
  12. DuPont Transportation and Industrial, DuPontTM Rynite® (2020), PET Thermoplastic Resins Molding Guide, https://www.dupont.com/content/dam/dupont/amer/us/en/transportation-industrial/public/documents/en/Rynite_Molding_Guide_RYE_A11161_00_B0615.pdf (accessed 15 November 2020).
  13. Dyosiba, X., Ren, J., Musyoka, N.M., Langmi, H.W., Mathe, M.K. and Onyango, M. (2019), "Feasibility of varied polyethylene terephthalate wastes as a linker source in metal-organic framework UiO-66(Zr) synthesis", Ind. Eng. Chem. Res. 58(36). 17010-17016. https://doi.org/10.1021/acs.iecr.9b02205.
  14. Engineering ToolBox (2008), Concrete - Properties, https://www.engineeringtoolbox.com/concrete-propertiesd_1223.html (accessed 15 November 2020).
  15. European Commission (2018), Changing the Way We Use Plastics, https://op.europa.eu/en/publication-detail/-/publication/e6f102e3-0bb9-11e8-966a01aa75ed71a1/language-en (accessed 15 November 2020).
  16. European Commission DG ENV, BIO Intelligence Service (2011), Plastic Waste in the Environment, https://ec.europa.eu/environment/waste/studies/pdf/plastics.pdf (accessed 15 November 2020).
  17. Fattahi, A.M., Safaei B., Zin Z. and Chu F. (2021), "Experimental studies on elastic properties of high density polyethylene-multi walled carbon nanotube nanocomposites", Steel Compos. Struct., 38(2), 177-187. https://doi.org/10.12989/scs.2021.38.2.177.
  18. Greenpeace (2019), Plastic Korea, https://storage.googleapis.com/planet4-koreastateless/2019/12/f360eebd-플라스틱보고서_final.pdf (accessed 15 November 2020).
  19. Jo, S.H., Kim, G.H., Cho, M.J., Han, M.W. and Kang, K.S. (2014), "Feedstock recycling technology from polyester wastes (in Korean)", Korean Chem. Eng. Res. 52(1), 17-25. https://doi.org/10.9713/kcer.2014.52.1.17.
  20. Karalar, M. and Dicleli, M. (2020), "Low-cycle fatigue in steel Hpiles of integral bridges: A comparative study of experimental testing and finite element simulation", Steel Compos. Struct., 34(1), 35-51. https://doi.org/10.12989/scs.2020.34.1.035.
  21. Kim, H.W., Um, N.I., Kim, W.I., Lee, Y.K. and Kim, K.H. (2019), "Causes and countermeasures on the rejection of household plastic wastes collection (in Korean)", J. Korea Soc. Waste Manag. 36(4) 346-353. https://doi.org/10.9786/kswm.2019.36.4.346.
  22. Kim, H.W., Um, N.I., Park, Y.S., Lee, Y.K. and Kim, K.H. (2018), "A study on the status and policy direction of collection and recycling of waste plastics (in Korean)", J. Korea Soc. Waste Manag. 35(6), 471-480. https://doi.org/10.9786/kswm.2018.35.6.471.
  23. Korea Environment Corporation (2020), Korea Resource Recirculation Information System, 2020 March Market price survey on recyclable materials (in Korean). https://www.recyclinginfo.or.kr/rrs/stat/envStatDetail.do?menuNo=M13020301&pageIndex=1&bbsId=BBSMSTR_000000000002&s_nttSj=KEC007&nttId=1029&searchBgnDe=&searchEndDe=0, 2020, (accessed 15 November 2020).
  24. Korea Environment Corporation, Ministry of Environment in Korea, Resource Recirculation Information System (2020), National Waste Statistics Survey, https://www.recyclinginfo.or.kr/sds/strProcessIndex.do?menuNo=M130303 (accessed 15 November 2020).
  25. Krehula, L.K., Sirocic, A.P., Dukic, M. and Hrnjak-Murgic, Z. (2013), "Cleaning efficiency of poly (ethylene terephthalate) washing procedure in recycling process", J. Elastom. Plast. 45(5), 429-444. https://doi.org/10.1177/0095244312457798.
  26. Lee, J. (2020), VisualFEAv5.13 (Version 5.13), Intuition Software. www.visualfea.com (accessed 15 November 2020).
  27. Lim, J.H. (2007), "A study on rate dependency and dynamic fracture behavior of brittle material using micro-scale (in Korean)", Yonsei University. http://www.riss.kr/link?id=T11089507 (accessed 11 November 2020).
  28. Marzouk, O.Y., Dheily, R.M. and Queneudec, M. (2007), "Valorization of post-consumer waste plastic in cementitious concrete composites", Waste Manag. 27(2), 310-318. https://doi.org/10.1016/j.wasman.2006.03.012.
  29. Michael Raj, F., Nagarajan, V.A., Sahaya Elsi, S. and Jayaram R.S. (2016), "Effect of fiber content on flexural properties of fishnet/GFRP hybrid composites", Steel Compos. Struct., 22(1), 13-24. http://dx.doi.org/10.12989/scs.2016.22.1.013.
  30. Motan Colortronic (2016), PET Fines from Recycled Bottles: A Valuable Raw Material, http://www.motancolortronic.co.uk/pet-fines-from-recycled-bottles-a-valuableraw-material (accessed 15 November 2020).
  31. National Institute of Environmental Research (2019), "A study on life cycle assessment of plastic waste recycling (I): Domestic wastes (in Korean)", Publication No. 11-1480523-003874-01. National Institute of Environmental Research, Incheon.
  32. Park, S.H. and Kim, S.H. (2014), "Poly (ethylene terephthalate) recycling for high value added textiles", Fash. Text, 1(1), https://doi.org/10.1186/s40691-014-0001-x.
  33. Pergal, M.V. and Balaban, M. (2017), "Chapter 1. Poly (Ethylene Terephthalate): Synthesis and Physicochemical Properties, in: Barber NA (Ed), Polyethylene terephthalate: Uses, properties and degradation", NOVA Science Publishers, New York.
  34. Plastic Technologies Inc. (2018), How Light Impacts Recycled Polyethylene Terephthalate (rPET) Characteristics, https://www.plastictechnologies.com/wpcontent/uploads/2018/07/How-Light-Impacts-rPETCharacteristics.pdf (accessed 15 November 2020).
  35. Pudack, C., Stepanski, M. and Fassler, P. (2020), "PET recycling - Contributions of crystallization to sustainability", Chem. Ing. Tech. 92(4), 452-458. https://doi.org/10.1002/cite.201900085.
  36. Rebeiz, K.S., Serhal, S.P. and Fowler, D.W. (1995), "Shear strength of reinforced polyester concrete using recycled PET", J Struct Eng. 121(9), 1370-1375. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:9(1370).
  37. Rebiez, K.S. (1996), "Precast use of polymer concrete using unsaturated polyester resin based on recycled PET waste", Constr. Build. Mater. 10(3), 215-220. https://doi.org/10.1016/0950-0618(95)00088-7.
  38. Schaefer, C.E., Kupwade-Patil, K., Ortega, M., Soriano, C., Buyukozturk, O., White, A.E. and Short, M.P. (2018), "Irradiated recycled plastic as a concrete additive for improved chemo-mechanical properties and lower carbon footprint", Waste Manag. 71, 426-439. https://doi.org/10.1016/j.wasman.2017.09.033.
  39. SpecialChem SA (2020), Young's Modulus. https://omnexus.specialchem.com/polymerproperties/properties/young-modulus, (accessed 15 November 2020).
  40. The Association of Plastic Recyclers (APR), National Association for PET Container Resources (2018), Report on postconsumer PET container recycling activity in 2017, https://napcor.com/wpcontent/uploads/2018/11/NAPCOR_2017RateReport_FINAL_rev.pdf (accessed 15 November 2020).
  41. The Ocean Cleanup (2020), The Great Pacific Garbage Patch, https://theoceancleanup.com/great-pacific-garbage-patch/(accessed 13 April 2020).
  42. Welle, F. (2011), "Twenty years of PET bottle to bottle recyclingAn overview", Resour. Conserv. Recycl. 55(11), 865-875. https://doi.org/10.1016/j.resconrec.2011.04.009.
  43. Welle, F. (2018), Fraunhofer Institute for Process Engineering and Packaging IVV, The facts about PET, https://www.petcoreeurope.org/images/news/pdf/factsheet_the_facts_about_pet_dr_frank_welle_2018.pdf (accessed 15 November 2020).
  44. Xie, M., Qiao, Q., Sun, Q. and Zhang, L.L. (2011), "Environmental impacts from PET packaging waste management using life cycle assessment: A case study in China", In: 2011 International Symposium on Water Resource and Environmental Protection, 20-22 May 2011, Xi'an, China. IEEE 2478-2481. https://doi.org/10.1109/ISWREP.2011.5893378.
  45. You, X., Snowdon, M.R., Misra, M. and Mohanty, A.K. (2018), "Biobased poly(ethylene terephthalate)/poly(lactic acid) blends tailored with epoxide compatibilizers", ACS Omega. 3(9), 11759-11769. https://doi.org/10.1021/acsomega.8b01353.
  46. Zhang, J.M., Hua, Q., Reynolds, C.T., Zhao, Y., Dai, Z., Bilotti, E., Tang, J. and Peijs, T. (2017), "Preparation of high modulus poly(ethylene terephthalate): Influence of molecular weight, extrusion, and drawing parameters", Int. J. Polym. Sci. 2017, 2781425. https://doi.org/10.1155/2017/2781425.
  47. Zhidan, L., Juncai, S., Chao, C. and Xiuju, Z. (2011), "Polypropylene/wasted poly (ethylene terephthalate) fabric composites compatibilized by two different methods: Crystallization and melting behavior, crystallization morphology, and kinetics", J. Appl. Polym. Sci. 121(4), 1972-1981. https://doi.org/10.1002/app.33757.