Acknowledgement
This work is supported by the National Natural Science Foundation of China [grant numbers 12002090, 12032009]; and the GuangDong Basic and Applied Basic Research Foundation [grant number 2019A1515110808].
References
- ACI 440.1R (2015), Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars, American Concrete Institute; Farmington Hills, MI, USA.
- ACI 318 (2019), Building code requirements for structural concrete and commentary, American Concrete Institute; Farmington Hills, MI, USA.
- Ahmed, A., Guo, S., Zhang, Z., Shi, C. and Zhu, D. (2020), "A review on durability of fiber reinforced polymer (FRP) bars reinforced seawater sea sand concrete", Constr. Build. Mater., 256, 119484. https://doi.org/10.1016/j.conbuildmat.2020.119484.
- Behnam, B. and Eamon, C. (2013), "Reliability-based design optimization of concrete flexural members reinforced with ductile FRP bars", Constr. Build. Mater., 47, 942-950. https://doi.org/10.1016/j.conbuildmat.2013.05.101.
- Bencardino, F., Condello, A. and Ombres, L. (2016), "Numerical and analytical modeling of concrete beams with steel, FRP and hybrid FRP-steel reinforcements", Compos. Struct., 140, 53-65. https://doi.org/10.1016/j.compstruct.2015.12.045.
- Benmokrane, B., Ali, A.H., Mohamed, H.M., ElSafty, A. and Manalo, A. (2017), "Laboratory assessment and durability performance of vinyl-ester, polyester, and epoxy glass-FRP bars for concrete structures", Compos. Part B Eng., 114, 163-174. https://doi.org/10.1016/j.compositesb.2017.02.002.
- Chellapandian, M., Prakash, S.S. and Sharma, A. (2017), "Strength and ductility of innovative hybrid NSM reinforced and FRP confined short RC columns under axial compression", Compos. Struct., 176, 205-216. https://doi.org/10.1016/j.compstruct.2017.05.033.
- Dong, Z., Wu, G. and Xu, Y. (2017), "Bond and flexural behavior of sea sand concrete members reinforced with hybrid steelcomposite bars presubjected to wet-dry cycles", J. Compos. Constr., 21, 040160952. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000749.
- Dong, Z., Wu, G., Zhao, X., Zhu, H. and Lian, J. (2018a), "Bond durability of steel-FRP composite bars embedded in seawatersea-sand concrete under constant bending and shearing stress", Constr. Build. Mater., 192, 808-817. https://doi.org/10.1016/j.conbuildmat.2018.10.154.
- Dong, Z., Wu, G., Zhao, X., Zhu, H. and Lian, J. (2018b), "Durability test on the flexural performance of seawater seasandconcrete beams completely reinforced with FRP bars", Constrbuild. Mater., 192, 671-682. https://doi.org/10.1016/j.conbuildmat.2018.10.166.
- Fakharifar, M., Dalvand, A., Sharbatdar, M.K., Chen, G. andSneed, L. (2016), "Innovative hybrid reinforcement constituting conventional longitudinal steel and FRP stirrups for improved seismic strength and ductility of RC structures", Front Struct Civ Eng., 10(1), 44-62. https://doi.org/10.1007/s11709-015-0295-9.
- GB/T 50081 (2002), Standard for test method of mechanical properties on ordinary concrete, China Architecture and Building Press; Beijing, China.
- GB 50010 (2010), Code for design of concrete structures, China Architecture and Building Press; Beijing, China.
- GB/T 26743 (2011), Fiber reinforced composite bars for civil engineering, China Architecture and Building Press; Beijing, China.
- GB/T 50152(2012), Standard for test method of concrete structures, China Architecture and Building Press; Beijing, China.
- Ge, W., Chen, K., Guan, Z., Ashour, A., Lu, W. and Cao, D. (2021), "Eccentric compression behaviour of concrete columns reinforced with steel-FRP composite bars", Eng. Struct., 238, 112240. https://doi.org/10.1016/j.engstruct.2021.112240.
- Ge, W., Han, M., Guan, Z., Zhang, P., Ashour, A., Li, W., Lu, W., Cao, D. and Yao, S. (2021), "Tension and bonding behaviour of steel-FRP composite bars subjected to the coupling effects of chloride corrosion and load", Constr. Build. Mater., 296, 123641. https://doi.org/10.1016/j.conbuildmat.2021.123641.
- Ge, W.J., Wang, Y.M., Ashour, A., Lu, W.G. and Cao, D.F. (2020), "Flexural performance of concrete beams reinforced with steel-FRP composite bars", Arch. Civ. Mech. Eng., 20(2), 56. https://doi.org/10.1007/s43452-020-00058-6.
- Guo, F., Al-Saadi, S., Raman, R.S. and Zhao, X.L. (2018), "Durability of fiber reinforced polymer (FRP) in simulated seawater sea sand concrete (SWSSC) environment", Corros. Sci., 141, 1-13. https://doi.org/10.1016/j.corsci.2018.06.022.
- JG/T 406 (2013), Glass FRBRE reinforced plastics rebar for civil engineering, CCI Standard; Beijing, China.
- Job, T. and S, R. (2021), "Prediction of the load and deflection response of concrete deep beams reinforced with FRP bars", Mech. Adv. Mater. Struct., 28(1), 43-66. https://doi.org/10.1080/15376494.2018.1549292.
- Kara, I.F. and Ashour, A.F. (2012), "Flexural performance of FRP reinforced concrete beams", Compos. Struct., 94(5), 1616-1625. https://doi.org/10.1016/j.compstruct.2011.12.012.
- Kara, I.F., Ashour, A.F. and Koroglu, M.A. (2015), "Flexural behavior of hybrid FRP/steel reinforced concrete beams", Compos. Struct., 129, 111-121. https://doi.org/10.1016/j.compstruct.2015.03.073.
- Lau, D. and Pam, H.J. (2010), "Experimental study of hybrid FRP reinforced concrete beams", Eng. Struct., 32(12), 3857-3865. https://doi.org/10.1016/j.engstruct.2010.08.028.
- Lin, J., Huang, P., Guo, Y., Guo, X., Zeng, J., Zhao, C. and Chen, Z. (2020a), "Fatigue behavior of RC beams strengthened with CFRP laminate under hot-wet environments and vehicle random loads coupling", Int. J. Fatigue., 131, 105329. https://doi.org/10.1016/j.ijfatigue.2019.105329.
- Lin, J., Song, Y., Xie, Z., Guo, Y., Yuan, B., Zeng, J. and Wei, X. (2020b), "Static and dynamic mechanical behavior of engineered cementitious composites with PP and PVA fibers", J. Build. Eng., 29, 101097. https://doi.org/10.1016/j.jobe.2019.101097.
- Lin, J., Su, J, Pan, H., Peng, Y., Guo, Y., Chen, W., Sun, X., Yuan, X., Liu, G. and Lan, X. (2022), "Dynamic compression behavior of ultra-high performance concrete with hybrid polyoxymethylene fiber and steel fiber", J. Mater. Res. Technol., 20, 4473-4486. https://doi.org/10.1016/j.jmrt.2022.08.139.
- Mustafa, S.A. and Hassan, H.A. (2018), "Behavior of concrete beams reinforced with hybrid steel and FRP composites", HBRC J., 14(3), 300-308. https://doi.org/10.1016/j.hbrcj.2017.01.001.
- Oehlers, D.J., Muhamad, R. and Ali, M.M. (2013), "Serviceability flexural ductility of FRP RC beams: a discrete rotation approach", Constr. Build. Mater., 49, 974-984. https://doi.org/10.1016/j.conbuildmat.2012.10.001.
- Oudah, F. and El-Hacha, R. (2012), "A new ductility model of reinforced concrete beams strengthened using Fiber Reinforced Polymer reinforcement", Compos. Part B Eng.., 43(8), 3338-3347. https://doi.org/10.1016/j.compositesb.2012.01.071.
- Qin, R., Zhou, A. and Lau, D. (2017), "Effect of reinforcement ratio on the flexural performance of hybrid FRP reinforced concrete beams", Compos. Part B Eng.., 108, 200-209. https://doi.org/10.1016/j.compositesb.2016.09.054.
- Smith, S.T., Zhang, H. and Wang, Z. (2013), "Influence of FRP anchors on the strength and ductility of FRP-strengthened RC slabs", Constr. Build. Mater., 49, 998-1012. https://doi.org/10.1016/j.conbuildmat.2013.02.006.
- Sun, Z., Wu, G., Wu, Z. and Zhang, M. (2011), "Seismic behavior of concrete columns reinforced by Steel-FRP composite bars", J. Compos. Constr., 15(5), 696-706. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000199.
- Teng, J.G., Chen, J. and Smith, S.T. (2002), FRP: Strengthened RC Structures, China Bbuilding Industry Press, Beijing, China.
- Theriault, M. and Benmokrane, B. (1998), "Effects of FRP reinforcement ratio and concrete strength on flexural behavior of concrete beams", J. Compos. Constr., 2(1), 7-16. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:1(7).
- Toutanji, H. and Deng, Y. (2003), "Deflection and crack-width prediction of concrete beams reinforced with glass FRP rods", Constr. Build. Mater., 17(1), 69-74. https://doi.org/10.1016/S0950-0618(02)00094-6.
- Wu, G., Sun, Z.Y., Wu, Z.S. and Luo, Y.B. (2012), "Mechanical properties of Steel-FRP Composite Bars (SFCBs) and performance of SFCB reinforced concrete structures", Adv. Struct. Eng., 15(4), 625-635. https://doi.org/10.1260/1369-4332.15.4.625.
- Wu, G., Wu, Z., Luo, Y., Sun, Z. and Hu, X. (2010), "Mechanical properties of steel-FRP composite bar under uniaxial and cyclic tensile loads", J. Mater. Civil Eng., 22(10), 1056-1066. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000110.
- Xiao, S., Lin, J., Li, L., Guo, Y., Zeng, J., Xie, Z., Wei, F. and Li, M. (2021), "Experimental study on flexural behavior of concrete beam reinforced with GFRP and steel-fiber composite bars", J. Build. Eng.., 43, 103087. https://doi.org/10.1016/j.jobe.2021.103087.
- Yang, Y., Pan, D., Wu, G. and Cao, D. (2021), "A new design method of the equivalent stress-strain relationship for hybrid (FRP bar and steel bar) reinforced concrete beams", Compos. Struct., 270, 114099. https://doi.org/10.1016/j.compstruct.2021.114099.
- Zhao, D., Pan, J., Zhou, Y., Sui, L. and Ye, Z. (2020), "New types of steel-FRP composite bar with round steel bar inner core: Mechanical properties and bonding performances in concrete", Constr. Build. Mater., 242, 118062. https://doi.org/10.1016/j.conbuildmat.2020.118062.
- Zhou, Y., Gao, H., Hu, Z., Qiu, Y., Guo, M., Huang, X. and Hu, B. (2020), "Ductile, durable, and reliable alternative to FRP bars for reinforcing seawater sea-sand recycled concrete beams: steel/FRP composite bars", Constr. Build. Mater., https://doi.org/10.1016/j.conbuildmat.2020.121264.
- Zhou, Y., Zheng, Y., Pan, J., Sui, L., Xing, F., Sun, H. and Li, P. (2019), "Experimental investigations on corrosion resistance of innovative steel-FRP composite bars using X-ray microcomputed tomography", Compos. Part B Eng.., 161, 272-284. https://doi.org/10.1016/j.compositesb.2018.10.069.