Acknowledgement
The research described in this paper was financially supported by the National Key R&D Program of China (Grant No. 2019YFE0112900) and the National Natural Science Foundation of China (Grant No. 51878542, 51378169).
References
- Bruneau, M. and Reinhorn, A. (2007), "Exploring the concept of seismic resilience for acute care facilities", Earthq. Spectra, 23(1), 41-62. http://dx.doi.org/10.1193/1.2431396.
- Fang, C., Dong, L., Zheng, Y., Michael, C.H.Y. and Sun, R.Q. (2020), "Rocking bridge piers equipped with shape memory alloy (SMA) washer springs", Eng. Struct., 214(1), 110651. http://dx.doi.org/10.1016/j.engstruct.2020.110651.
- Akiyama, M., Matsuzaki, H., Dang, H.T. and Suzuki, M. (2012), "Reliability-based capacity design for reinforced concrete brige structures", Struct. Infrasturct. Eng., 8(12), 1096-1107. https://doi.org/10.1080/15732479.2010.507707.
- Ichikawa, S., Matsuzaki, H., Moustafa, A., ElGawady, M.A. and Kawashima, K. (2016), "Seismic-resistant bridge columns with ultrahigh-performance concrete segments", J. Struct. Eng., 21(9), 04016049. http://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0000898.
- Xia, X.S., Zhang, X.Y., Shi, J. and Tang, J.Y. (2021a), "Seismic isolation of railway bridges using a self-centering pier", Smart Struct. Syst., 27(3), 447-455. http://dx.doi.org/10.12989/sss.2021.27.3.447.
- Xia, X.S., Wu, S.W., Wei, X.H., Jiao, C.Y. and Chen, X.C. (2021b), "Experimental and numerical study on seismic behavior of a self-centering railway bridge pier", Earthq. Struct., 21(2), 173-183. https://doi.org/10.12989/eas.2021.21.2.173.
- Piras, S., Palermo, A. and Saiid Saiidi, M. (2022), "State-of-the-art of post-tensioned rocking bridge substructure systems", J. Bridge Eng., 27(3), 03122001. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001833.
- Han Q, Jia, Z.L., Xu, K., Zhou, Y.L. and Du, X.L. (2019), "Hysteretic behavior investigation of self-centering doublecolumn rocking piers for seismic resilience", Eng. Struct., 188, 218-232. https://doi.org/10.1016/j.engstruct.2019.03.024.
- Cao, Z.L., Guo, T., Xu, Z.K. and Lu, S. (2015a), "Theoretical analysis of self-centering concrete piers with external dissipators", Earthq. Struct., 9(6), 1313-1336. https://doi.org/10.12989/eas.2015.9.6.1313.
- Cao, Z.L., Wang, H. and Guo, T. (2016b), "Fragility analysis of self-centering prestressed concrete bridge pier with externalaluminum dissipators", Adv. Struct. Eng., 20(8), 1210-1222. https://doi.org/10.1177%2F1369433216673376. https://doi.org/10.1177%2F1369433216673376
- Mitoulis, S.A. and Rodriguez, J.R. (2017), "Seismic performance of novel resilient hinges for columns and application on irregular bridges", J. Bridge Eng., 22(2), 04016114. http://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0000980.
- Rodgers, G.W., Mander, J.B., Chase, J.G. and Dhakal, R.P. (2016), "Beyond ductility: parametric testing of a jointed rocking beamcolumn connection designed for damage avoidance", J. Struct. Eng., 142(8), C4015006. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0001318.
- Sideris, P., Aref, A.J. and Filiatrault, A. (2014), "Quasistatic cyclic testing of a large-scale hybrid sliding rocking segmental column with slip-dominant joints", J. Bridge Eng., 19(10), 04014036. http://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0000605.
- Ou, Y.C., Tsai, M.S., Chang, K.C. and Lee, G.C. (2010), "Cyclicbehavior of precast segmental concrete bridge columns withhigh performance or conventional steel reinforcing bars as energy dissipation bars", Earthq. Eng. Struct. Dyn., 39(11), 1181-1198. https://doi.org/10.1002/eqe.986.
- Guo, T., Cao, Z.L., Xu, Z.K. and Lu, S. (2015), "Cyclic load tests on self-centering concrete pier with external dissipators and enhanced durability", J. Struct. Eng., 142(1), 04015088. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0001357.
- Wang, Z., Wang, J.Q., Tang, Y.C., Liu, T.X., Gao, Y.F. and Zhang, J. (2018), "Seismic behavior of precast segmental UHPC bridge columns with replaceable external cover plates and internal dissipaters", Eng. Struct., 177, 540-555. https://doi.org/10.1016/j.engstruct.2018.10.012.
- Guerrini, G., Restrepo, J.I., Massari, M. and Vervelidis, A. (2014), "Seismic behavior of post-tensioned self-centering precast concrete dual-shell steel columns", J. Struct. Eng., 141(4), 04014115. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0001054.
- Mohebbi, A., Saiidi, M.S. and Itani, A.M. (2018), "Shake table studies and analysis of a PT-UHPC bridge column with pocket connection", J. Struct. Eng., 144(4), 04018021. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001997.
- Guo, J., Xin, K.G., He, M.H. and Hu, L. (2012), "Experimental study and analysis on the seismic performance of a selfcentering bridge pier", Eng. Mech., 29(S1), 29-34+45. https://dx.doi.org/10.6052/j.issn.1000-4750.2011.11.S036.
- Zhang, L., Li, Z.H. and Ma, X.Q. (2018), "Study on parameter characteristics of rubber Mooney-Rivlin model", Noise Vib. Control, 38(S2), 427-430. https://dx.doi.org/10.3969/j.issn.1006-1355.2018.Z1.091.
- Yoshida, N. (2014), "Comparison of seismic ground response analyses under large earthquakes", Indian Geotech. J., 44(2), 119-131. https://dx.doi.org/10.1007/s40098-014-0104-8.
- Palermo, A. and Pampanin, S. (2008), "Enhanced seismic performance of hybrid bridge systems: Comparison with traditional monolithic solutions", J. Earthq. Eng., 12(8), 1267-1295. https://doi.org/10.1080/13632460802003819.