DOI QR코드

DOI QR Code

Assessment of the performance of composite steel shear walls with T-shaped stiffeners

  • 투고 : 2021.07.15
  • 심사 : 2022.10.05
  • 발행 : 2022.09.25

초록

Composite steel plate shear wall (CSPSW) is a relatively novel structural system proposed to improve the performance of steel plate shear walls by adding one or two layers of concrete walls to the infill plate. In addition, the buckling of the infill steel plate has a significant negative effect on the shear strength and energy dissipation capacity of the overall systems. Accordingly, in this study, using the finite element (FE) method, the performance and behavior of composite steel shear walls using T-shaped stiffeners to prevent buckling of the infill steel plate and increase the capacity of CSPSW systems have been investigated. In this paper, after modeling composite steel plate shear walls with and without steel plates with finite element methods and calibration the models with experimental results, effects of parameters such as several stiffeners, vertical, horizontal, diagonal, and a combination of T-shaped stiffeners located in the composite wall have been investigated on the ultimate capacity, web-plate buckling, von-Mises stress, and failure modes. The results showed that the arrangement of stiffeners has no significant effect on the capacity and performance of the CSPSW so that the use of vertical or horizontal stiffeners did not have a significant effect on the capacity and performance of the CSPSW. On the other hand, the use of diagonal hardeners has potentially affected the performance of CSPSWs, increasing the capacity of steel shear walls by up to 25%.

키워드

참고문헌

  1. ABAQUS-6.14. (2014), Standard User's Manual, Hibbitt, Karlsson and Sorensen, Inc.
  2. Adibi, M., Talebkhaha, R. and Yahyaabadib, A. (2019), "Simulation of cyclic response of precast concrete beamcolumn joints", Comput. Concrete, 24(3), 223-236. https://doi.org/10.12989/cac.2019.24.3.223.
  3. AISC 341-10 (2010), Seismic Provisions for Structural Steel Buildings, (ANSI/AISC 341-10), American Institute of Steel Construction, Chicago, IL.
  4. American Concrete Institute (2014), Farmington Hills (MI), Detroit, USA.
  5. Arabzadeh, A., Soltani, M. and Ayazi, A. (2011), "Experimental investigation of composite shear walls under shear loadings", Thin Wall. Struct., 49(7), 842-854. https://doi.org/10.1016/j.tws.2011.02.009.
  6. Astaneh-Asl, A. (2002), Seismic Behavior and Design of Composite Steel Plate Shear Walls, Structural Steel Educational Council, Moraga, CA.
  7. Bagherinejad, M.H. and Haghollahi, A. (2020), "New form of perforated steel plate shear wall in simple frames using topology optimization", Struct. Eng. Mech., 74(3), 325. https://doi.org/10.12989/sem.2020.74.3.325.
  8. Beena, K., Naveen, K. and Shruti, S. (2017), "Behaviour of bolted connections in concrete-filled steel tubular beam-column joints", Steel Compos. Struct., 25(4), 443-456. https://doi.org/10.12989/scs.2017.25.4.443.
  9. Behbahanifard, M.R., Grondin, G.Y. and Elwi, A.E. (2003), Structural Engineering Report, Rep. No. 254.
  10. Campione, G. and Scibilia, N. (2002), "Beam-column behavior of concrete filled steel tubes", Steel Compos. Struct., 2(4), 259-276. https://doi.org/10.12989/scs.2002.2.4.259.
  11. Chen, L., Mahmoud, H., Tong, S.M. and Zhou, Y. (2015), "Seismic behavior of double steel plate-HSC composite walls", Eng. Struct., 102, 1-12. https://doi.org/10.1016/j.engstruct.2015.08.017.
  12. Elchalakani, M., Patel, V.I., Karrech, A., Hassanein, M.F., Fawzia, S. and Yang, B. (2019), "Finite element simulation of circular short CFDST columns under axial compression", Struct., 20, 607-619. https://doi.org/10.1016/j.istruc.2019.06.004.
  13. Fathy, E. (2020), "Seismic assessment of thin steel plate shear walls with outrigger system", Struct. Eng. Mech., 74(2), 267-282. https://doi.org/10.12989/sem.2020.74.2.267.
  14. Firouzianhaij, A., Gorji Azandariani, M., Usefi, N. and Samali, B. (2022), "Performance of baseplate connections in CFS storage rack systems: An experimental, numerical and theoretical study", J. Constr. Steel Res., 196, 107421. https://doi.org/10.1016/j.jcsr.2022.107421.
  15. Ghanbari-Ghazijahani, T., Nabati, A., Gorji Azandariani, M. and Fanaie, N. (2020), "Crushing of steel tubes with different infills under partial axial loading", Thin Wall. Struct., 149, 106614. https://doi.org/10.1016/j.tws.2020.106614.
  16. Gholami, M., Zare, E., Gorji Azandariani, M. and Moradifard, R. (2021), "Seismic behavior of dual buckling-restrained steel braced frame with eccentric configuration and post-tensioned frame system", Soil Dyn. Earthq. Eng., 151, 106977. https://doi.org/10.1016/j.soildyn.2021.106977.
  17. Gorji Azandariani, A., Gholhaki, M. and Gorji Azandariani, M. (2022a), "Assessment of damage index and seismic performance of steel plate shear wall (SPSW) system", J. Constr. Steel Res., 191, 107157. https://doi.org/10.1016/j.jcsr.2022.107157.
  18. Gorji Azandariani, M., Abdolmaleki, H. and Gorji Azandariani, A. (2020a), "Numerical and analytical investigation of cyclic behavior of steel ring dampers (SRDs)", Thin Wall. Struct., 151, 106751. https://doi.org/10.1016/j.tws.2020.106751.
  19. Gorji Azandariani, M. and Gholami, M. (2022), "Seismic fragility investigation of hybrid structures BRBF with eccentricconfiguration and self-centering frame", J. Constr. Steel Res., 107300. https://doi.org/10.1016/j.jcsr.2022.107300.
  20. Gorji Azandariani, M., Gholhaki, M. and Kafi, M.A. (2021a), "Hysteresis finite element model for evaluation of cyclic behavior and performance of steel plate shear walls (SPSWs)", Struct., 29, 30-47. https://doi.org/https://doi.org/10.1016/j.istruc.2020.11.009.
  21. Gorji Azandariani, M., Gholhaki, M., Kafi, M.A. and Gorji Azandariani, A. (2022b), "Assessment of cyclic behavior and performance of hybrid linked-column steel plate shear wall system", J. Build. Eng., 58, 104963. https://doi.org/10.1016/j.jobe.2022.104963.
  22. Gorji Azandariani, M., Gholhaki, M., Kafi, M.A. and Zirakian, T. (2021b), "Study of effects of beam-column connection and column rigidity on the performance of SPSW system", J. Build. Eng., 33. https://doi.org/10.1016/j.jobe.2020.101821.
  23. Gorji Azandariani, M., Gholhaki, M., Kafi, M.A., Zirakian, T., Khan, A., Abdolmaleki, H. and Shojaeifar, H. (2021c), "Investigation of performance of steel plate shear walls with partial plate-column connection (SPSW-PC)", Steel Compos. Struct., 39(1), 109-123. https://doi.org/10.12989/scs.2021.39.1.109.
  24. Gorji Azandariani, M., Gorji Azandariani, A. and Abdolmaleki, H. (2020b), "Cyclic behavior of an energy dissipation system with steel dual-ring dampers (SDRDs)", J. Constr. Steel Res., 172, 106145. https://doi.org/10.1016/j.jcsr.2020.106145.
  25. Gorji Azandariani, M., Kafi, M.A. and Gholhaki, M. (2021d), "Innovative hybrid linked-column steel plate shear wall (HLCS) system: Numerical and analytical approaches", J. Build. Eng., 43, 102844. https://doi.org/10.1016/j.jobe.2021.102844.
  26. Gorji Azandariani, M., Rousta, A.M., Mohammadi, M., Rashidi, M. and Abdolmaleki, H. (2021e), "Numerical and analytical study of ultimate capacity of steel plate shear walls with partial plate-column connection (SPSW-PC)", Struct., 33, 3066-3080. https://doi.org/10.1016/j.istruc.2021.06.046.
  27. Gorji Azandariani, M., Rousta, A.M., Usefvand, E., Abdolmaleki, H. and Gorji Azandariani, A. (2021f), "Improved seismic behavior and performance of energy-absorbing systems constructed with steel rings", Struct., 29, 534-548. https://doi.org/10.1016/j.istruc.2020.11.041.
  28. Guo, L., Rong, Q., Ma, X. and Zhang, S. (2011), "Behavior of steel plate shear wall connected to frame beams only", Int. J. Steel Struct., 11(4), 467-479. https://doi.org/10.1007/s13296-011-4006-7.
  29. Han, L.H., Yao, G.H. and Zhao, X.L. (2004), "Behavior and calculation on concrete-filled steel CHS (circular hollow section) beam-columns", Steel Compos. Struct., 4(3), 169-188. https://doi.org/10.12989/scs.2004.4.3.169.
  30. Hassan, M.M., Mahmoud, A.A. and Serror, M.H. (2016), "Behavior of concrete-filled double skin steel tube beamcolumns", Steel Compos. Struct., 22(5), 1141-1162. https://doi.org/10.12989/scs.2016.22.5.1141.
  31. Kalali, H., Hajsadeghi, M., Zirakian, T. and Alaee, F.J. (2015), "Hysteretic performance of SPSWs with trapezoidally horizontal corrugated web-plates", Steel Compos. Struct., 19(2), 277-292. https://doi.org/10.12989/scs.2015.19.2.277.
  32. Korkmaz, H.H. and Ecemis, A.S. (2017), "Seismic upgrading of reinforced concrete frames with steel plate shear walls", Earthq. Struct., 13(5), 473-484. https://doi.org/10.12989/eas.2017.13.5.473.
  33. Liang, X. (2003), Seismic Behavior of RCS Beam-Column Subassemblies and Frame Systems Designed Following a Joint Deformation-Based Capacity Design Approach, University of Michigan.
  34. Liu, D., Li, H. and Ren, H. (2020), "Study on the performance of concrete-filled steel tube beam-column joints of new types", Comput. Concrete, 26(6), 547-563. https://doi.org/10.12989/cac.2020.26.6.547.
  35. Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
  36. Mansouri, I., Arabzadeh, A., Farzampour, A., Hu, J.W., Mansouri, I., Arabzadeh, A., Farzampour, A. and Hu, J.W. (2020), "Seismic behavior investigation of the steel multi-story moment frames with steel plate shear walls", Steel Compos. Struct., 37(1), 91. https://doi.org/10.12989/scs.2020.37.1.091.
  37. Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H.R. (2019), "Experimental and numerical investigation of an innovative buckling-restrained fuse under cyclic loading", Struct., 22, 186-199. https://doi.org/10.1016/j.istruc.2019.07.014.
  38. Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H.R. (2020), "Performance of innovative composite bucklingrestrained fuse for concentrically braced frames under cyclic loading", Steel Compos. Struct., 36(2), 163-177. https://doi.org/10.12989/scs.2020.36.2.163.
  39. Mohebkhah, A. and Azandariani, M.G. (2020), "Shear resistance of retrofitted castellated link beams: Numerical and limit analysis approaches", Eng. Struct., 203, 109864. https://doi.org/10.1016/j.engstruct.2019.109864.
  40. Monsef Ahmadi, H., Sheidaii, M., Boudaghi, H. and De Matteis, G. (2020), "Experimental and numerical study on largely perforated steel shear plates with rectangular tube-shaped links", Adv. Struct. Eng., 23(15), 3307-3322. https://doi.org/10.1177/1369433220937147.
  41. Rahai, A. and Hatami, F. (2009), "Evaluation of composite shear wall behavior under cyclic loadings", J. Constr. Steel Res., 65(7), 1528-1537. https://doi.org/10.1016/j.jcsr.2009.03.011.
  42. Richart, F.E., Brandtzae g, A. and Brown, R.L. (1928), "A study of the failure of concrete under combined compressive stresses", University of Illinois at Urbana Champaign, College of Engineering. Engineering Experiment Station.
  43. Rousta, A.M. and Azandariani, M.G. (2022), "Micro-finite element and analytical investigations of seismic dampers with steel ring plates", Steel Compos. Struct., 43(5), 565. https://doi.org/10.12989/scs.2022.43.5.565.
  44. Rousta, A.M., Gorji Azandariani, M., Safaei Ardakani, M.A. and Shoja, S. (2022), "Cyclic behavior of an energy dissipation system with the vertical steel panel flexural-yielding dampers", Struct., 45, 629-644. https://doi.org/10.1016/j.istruc.2022.09.047.
  45. Rousta, A.M., Shojaeifar, H., Azandariani, M.G., Saberiun, S. and Abdolmaleki, H. (2021), "Cyclic behavior of an energy dissipation semi-rigid moment steel frames (SMRF) system with LYP steel curved dampers", Struct. Eng. Mech., 80(2), 129. https://doi.org/10.12989/SEM.2021.80.2.129.
  46. Sasmal, S., Novak, B. and Ramanjaneyulu, K. (2010), "Numerical analysis of under-designed reinforced concrete beam-column joints under cyclic loading", Comput. Concrete, 7(3), 203-220. https://doi.org/10.12989/cac.2010.7.3.203.
  47. Shafaei, S., Ayazi, A. and Farahbod, F. (2016), "The effect of concrete panel thickness upon composite steel plate shear walls", J. Constr. Steel Res., 117, 81-90. https://doi.org/10.1016/j.jcsr.2015.10.006.
  48. Soltani, N., Abedi, K., Poursha, M. and Golabi, H. (2017), "An investigation of seismic parameters of low yield strength steel plate shear walls", Earthq. Struct., 12(6), 713-723. https://doi.org/10.12989/eas.2017.12.6.713.
  49. Usefi, N. and Ronagh, H. (2020), "Seismic characteristics of hybrid cold-formed steel wall panels", Struct., 27, 718-731. https://doi.org/10.1016/j.istruc.2020.06.033.
  50. Usefi, N., Ronagh, H. and Sharafi, P. (2020), "Lateral performance of a new hybrid CFS shear wall panel for midriseconstruction", J. Constr. Steel Res., 168, 106000. https://doi.org/10.1016/j.jcsr.2020.106000.
  51. Usefvand, M., Rousta, A.M., Azandariani, M.G. and Abdolmaleki, H. (2021), "Steel dual-ring dampers: Micro-finite element modelling and validation of cyclic behavior", Smart Struct. Syst., 28(4), 579. https://doi.org/10.12989/sss.2021.28.4.579.
  52. Vaziri, E., Gholami, M. and Gorji Azandariani, M. (2021), "The wall-frame interaction effect in corrugated steel plate shear walls systems", Int. J. Steel Struct., 21(5), 1680-1697. https://doi.org/10.1007/s13296-021-00529-3.
  53. Xu, L., Li, Z. and Lv, Y. (2014), "Nonlinear seismic damage control of steel frame-steel plate shear wall structures using MR dampers", Earthq. Struct., 7(6), 937-953. https://doi.org/10.12989/eas.2014.7.6.937.
  54. Yang, Y.F. and Zhu, L.T. (2009), "Recycled aggregate concrete filled steel SHS beam-columns subjected to cyclic loading", Steel Compos. Struct., 9(1), 19-38. https://doi.org/10.12989/scs.2009.9.1.019.
  55. Yang, Y., Liu, J. and Fan, J. (2016), "Buckling behavior of double-skin composite walls: An experimental and modeling study", J. Constr. Steel Res., 121, 126-135. https://doi.org/10.1016/j.jcsr.2016.01.019.
  56. Zhao, Q. and Astaneh-Asl, A. (2004), "Cyclic behavior of traditional and innovative composite shear walls", J. Struct. Eng., 130(2), 271-284. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(271).
  57. Zoghi, M.A. and Mirtaheri, M. (2016), "Progressive collapse analysis of steel building considering effects of infill panels", Struct. Eng. Mech., 59(1), 59-82. https://doi.org/10.12989/sem.2016.59.1.059.