Acknowledgement
This work is supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 22CTAP-C164093-02).
References
- Abdel-Qader, I., Pashaie-Rad, S., Abudayyeh, O. and Yehia, S. (2006), "PCA-based algorithm for unsupervised bridge crack detection", Adv. Eng. Softw., 37(12), 771-778. https://doi.org/10.1016/j.advengsoft.2006.06.002.
- Amiri, G.G. and Rajabi, E. (2018), "Maximum damage prediction for regular reinforced concrete frames under consecutive earthquakes", Earthq. Struct., 14(2), 129-142. https://doi.org/10.12989/eas.2018.14.2.129.
- Aswegan, K., Larsen, R., Klemencic, R., Hooper, J. and Hasselbauer, J. (2017), "Performance-based wind and seismic engineering: benefits of considering multiple hazards", Structures Congress 2017, April.
- Basaran, H., Demir, A., Ercan, E., Nohutcu, H., Hokelekli, E. and Kozanoglu, C. (2016), "Investigation of seismic safety of a masonry minaret using its dynamic characteristics", Earthq. Struct., 10(3), 523-538. http://doi.org/10.12989/eas.2016.10.3.523.
- Bose, R.K. (2010), Energy Efficient Cities: Assessment Tools and Benchmarking Practices, World Bank Publications.
- Bramer, M. (2013), "Ensemble classification", Principles of Data Mining, Springer, London.
- Chen, E. (2012), "Multi-hazard design of mid-to high-rise structures", M.S. Thesis, University of Illinois at Urbana-Champaign, Urbana.
- Chen, S.R. and Cai, C.S. (2004), "Accident assessment of vehicles on long-span bridges in windy environments", J. Wind Eng. Indus. Aerodyn., 92(12), 991-1024. https://doi.org/10.1016/j.jweia.2004.06.002.
- Choi, J.G. and Lee, C.Y. (2018), "An empirical study of soundproof wall with reduced wind load", J. Korea Acad. Indus. Coop. Soc., 19(12), 272-278. https://doi.org/10.5762/KAIS.2018.19.12.272.
- City, B.L. and Assessment, E. (2010), "Urbanization and health", Bull. World Hlth. Organ., 88(4), 245-6. https://doi.org/10.2471/BLT.10.010410
- Clairbois, J.P. and Garai, M. (2015), "The European standards for roads and railways noise barriers: State of the art 2015", Proceedings of the 10th European Congress and Exposition on Noise Control Engineering: EuroNoise, 45-50.
- Code of Practice Noise Attenuation Walls.
- Cortes, C. and Vapnik, V. (1995), "Support-vector networks", Mach. Learn., 20(3), 273-297. https://doi.org/10.1007/BF00994018.
- Das, S.K. (2013), "10 Artificial neural networks in geotechnical engineering: modeling and application issues", Metaheur. Water Geotech Transp. Eng., 45, 231-267. https://doi.org/10.1016/B978-0-12-398296-4.00010-6
- Deng, J., Gu, D., Li, X. and Yue, Z.Q. (2005), "Structural reliability analysis for implicit performance functions using artificial neural network", Struct. Saf., 27(1), 25-48. https://doi.org/10.1016/j.strusafe.2004.03.004.
- Dhiman, N.K., Singh, B., Saini, P.K. and Garg, N. (2021), "Design of optimal noise barrier for metropolitan cities using artificial neural networks", Optimization Methods in Engineering, Springer, Singapore.
- Do Kim, S. and Jung, W.Y. (2017), "Wind fragility for soundproof wall with the variation of section shape of frame", Int. J. Civil Environ. Eng., 11(11), 1551-1557.
- Duru, E. (2016), "The design of an aluminium jam of noise barriers along (motor) ways".
- Elmolla, E.S., Chaudhuri, M. and Eltoukhy, M.M. (2010), "The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process", J. Hazard. Mater., 179(1-3), 127-134. https://doi.org/10.1016/j.jhazmat.2010.02.068.
- Falcone, R., Lima, C. and Martinelli, E. (2020), "Soft computing techniques in structural and earthquake engineering: A literature review", Eng. Struct., 207, 110269. https://doi.org/10.1016/j.engstruct.2020.110269.
- Farfani, H.A., Behnamfar, F. and Fathollahi, A. (2015), "Dynamic analysis of soil-structure interaction using the neural networks and the support vector machines", Exp. Syst. Appl., 42(22), 8971-8981. https://doi.org/10.1016/j.eswa.2015.07.053.
- Fletcher, R. (2013), Practical Methods of Optimization, John Wiley & Sons.
- Garson, D.G. (1991), "Interpreting neural network connection weights".
- Gep, B. and Tiao, G.C. (1973), Bayesian Inference in Statistical Analysis, Addison-Wesley, Reading.
- Gevrey, M., Dimopoulos, I. and Lek, S. (2003), "Review and comparison of methods to study the contribution of variables in artificial neural network models", Ecol. Model., 160(3), 249-264. https://doi.org/10.1016/S0304-3800(02)00257-0.
- Grubesa, S., Domitrovic, H. and Jambrosic, K. (2011), "Performance of traffic noise barriers with varying crosssection", Promet-Traff. Transp., 23(3), 161-168. https://doi.org/10.7307/ptt.v23i3.119.
- Ham, H., Kim, T.J. and Boyce, D. (2005), "Assessment of economic impacts from unexpected events with an interregional commodity flow and multimodal transportation network model", Transp. Res. Part A Policy Pract., 39(10), 849-860. https://doi.org/10.1016/j.tra.2005.02.006.
- Kappos, A.J. and Panagopoulos, G. (2004), "Performance-based seismic design of 3D R/C buildings using inelastic static and dynamic analysis procedures", ISET J. Earthq. Technol., 41(1), 141-158.
- Kazama, M. and Noda, T. (2012), "Damage statistics (Summary of the 2011 off the Pacific Coast of Tohoku earthquake damage)", Soil. Found., 52(5), 780-792. https://doi.org/10.1016/j.sandf.2012.11.003.
- Kiani, J., Camp, C. and Pezeshk, S. (2019), "On the application of machine learning techniques to derive seismic fragility curves", Comput. Struct., 218, 108-122. https://doi.org/10.1016/j.compstruc.2019.03.004.
- Kim, H. and Roschke, P.N. (2006), "Fuzzy control of baseisolation system using multi-objective genetic algorithm", Comput. Aid. Civil Infrastr. Eng., 21(6), 436-449. https://doi.org/10.1111/j.1467-8667.2006.00448.x.
- Kim, T., Kwon, O.S. and Song, J. (2019), "Response prediction of nonlinear hysteretic systems by deep neural networks", Neur. Network., 111, 1-10. https://doi.org/10.1016/j.neunet.2018.12.005.
- Klingner, R.E., McNerney, M.T. and Busch-Vishniac, I.J. (2003), "Design guide for highway noise barriers", Research Report No. 1471-1474, Center for Transportation Research, Bureau of Engineering Research, University of Texas at Austin, Austin, TX, USA.
- Knauer, H.S., Pedersen, S., Lee, C.S.Y. and Fleming, G.G. (2000), FHWA Highway Noise Barrier Design Handbook.
- Kwon, S.D., Kim, D.H., Lee, S.H. and Song, H.S. (2011), "Design criteria of wind barriers for traffic. Part 1: Wind barrier performance", Wind Struct., 14(1), 55-70. https://doi.org/10.12989/was.2011.14.1.055.
- Lagaros, N.D. and Papadrakakis, M. (2012), "Neural network based prediction schemes of the non-linear seismic response of 3D buildings", Adv. Eng. Softw., 44(1), 92-115. https://doi.org/10.1016/j.advengsoft.2011.05.033.
- Lee, H.S. and Jeong, K.H. (2018), "Performance-based earthquake engineering in a lower-seismicity region: South Korea", Earthq. Struct., 15(1), 45-65. https://doi.org/10.12989/eas.2018.15.1.045.
- Leon, J.X., Munoz, W.A.P., Anaya, M., Vitola, J. and Tibaduiza, D.A. (2019), "Structural damage classification using machine learning algorithms and performance measures", Structural Health Monitoring 2019.
- Li, S., Wang, Z., Guo, H. and Li, X. (2020), "Seismic performance of high strength steel frames with variable eccentric braces based on PBSD method", Earthq. Struct., 18(5), 527-542. https://doi.org/10.12989/eas.2020.18.5.527.
- Li, X., Li, X. and Su, Y. (2016), "A hybrid approach combining uniform design and support vector machine to probabilistic tunnel stability assessment", Struct. Saf., 61, 22-42. https://doi.org/10.1016/j.strusafe.2016.03.001.
- Li, Y. (2016), "Structure checking computations of sound barrier design", 5th International Conference on Sustainable Energy and Environment Engineering (ICSEEE 2016), Atlantis Press. https://doi.org/10.2991/icseee-16.2016.8.
- Lin, J.L., Kuo, C.H., Chang, Y.W., Chao, S.H., Li, Y.A., Shen, W.C., ... & Hwang, S.J. (2020a), "Reconnaissance and learning after the February 6, 2018, earthquake in Hualien, Taiwan", Bull. Earthq. Eng., 18(10), 4725-4754. https://doi.org/10.1007/s10518-020-00878-0.
- Lin, K.Y., Lin, T.K. and Lin, Y. (2020b), "Real-time seismic structural response prediction system based on support vector machine", Earthq. Struct., 18(2), 163-170. https://doi.org/10.12989/eas.2020.18.2.163.
- Mangalathu, S. and Jeon, J.S. (2018), "Classification of failure mode and prediction of shear strength for reinforced concrete beam-column joints using machine learning techniques", Eng. Struct., 160, 85-94. https://doi.org/10.1016/j.engstruct.2018.01.008.
- MathWorks, Inc. (2005), MATLAB: the Language of Technical Computing, Desktop Tools and Development Environment, Version 7, MathWorks.
- MATLAB (2021), MATLAB.
- McKenna, F. (2011), "OpenSees: a framework for earthquake engineering simulation", Comput. Sci. Eng., 13(4), 58-66. https://doi.org/10.1109/MCSE.2011.66.
- McKenna, F., Mazzoni, S. and Fenves, G. (2011), "Open system for earthquake engineering simulation (OpenSees) software version 2.2.0", University of California, Berkeley, CA, USA.
- Mirhosseini, R.T. (2017), "Seismic response of soil-structure interaction using the support vector regression", Struct. Eng. Mech., 63(1), 115-124. https://doi.org/10.12989/sem.2017.63.1.115.
- Moeindarbari, H. and Taghikhany, T. (2018), "Seismic reliability assessment of base-isolated structures using artificial neural network: Operation failure of sensitive equipment", Earthq. Struct., 14(5), 425-436. https://doi.org/10.12989/eas.2018.14.5.425.
- Neal, R.M. (1992), "Bayesian training of backpropagation networks by the hybrid Monte Carlo method", Technical Report CRG-TR-92-1, Dept. of Computer Science, University of Toronto, Canada.
- Nguyen, D.T. (2006), Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions, Springer Science & Business Media.
- Niewiadomski, L., Swierczyna, S. and Wuwer, W. (2014), "Capacity assessment and modification of high noise barriers", Road. Bridges-Drogi i Mosty, 13(2), 145-155. https://doi.org/10.7409/rabdim.014.010.
- Nusairat, J., Liang, R.Y., Engel, R., Hanneman, D., Abu-Hejleh, N. and Yang, K. (2004), "Drilled shaft design for sound barrier walls, signs, and signals", Report No. CDOT-DTD-R-2004, 8, Colorado Department of Transportation Research Branch.
- Oh, B.K., Glisic, B., Park, S.W. and Park, H.S. (2020), "Neural network-based seismic response prediction model for building structures using artificial earthquakes", J. Sound Vib., 468, 115109. https://doi.org/10.1016/j.jsv.2019.115109.
- Pan, Q. and Dias, D. (2017), "An efficient reliability method combining adaptive support vector machine and monte carlo simulation", Struct. Saf., 67, 85-95. https://doi.org/10.1016/j.strusafe.2017.04.006.
- PEER Pacific Earthquake Engineering Research (PEER) Center, NGA Database. http://peer.berkeley.edu/nga/. Accessed 11 Oct 2021
- Rajput, N. and Verma, S.K. (2014), "Back propagation feed forward neural network approach for speech recognition", Proceedings of 3rd International Conference on Reliability, Infocom Technologies and Optimization. IEEE, pp 1-6
- Ryall, J. (2020), "Could a major earthquake soon strike South Korea?", DW Made for Minds.
- Sainct, R., Feau, C., Martinez, J.M. and Garnier, J. (2020), "Efficient methodology for seismic fragility curves estimation by active learning on Support Vector Machines", Struct. Saf., 86, 101972. https://doi.org/10.1016/j.strusafe.2020.101972.
- Salehi, H. and Burgueno, R. (2018), "Emerging artificial intelligence methods in structural engineering", Eng. Struct., 171, 170-189. https://doi.org/10.1016/j.engstruct.2018.05.084.
- Salgado, R.A. and Guner, S. (2018), "A comparative study on nonlinear models for performance-based earthquake engineering", Eng. Struct., 172, 382-391. https://doi.org/10.1016/j.engstruct.2018.06.034.
- Sim, V., Kim, S. and Jung, W. (2018), "Wind fragility for sign structure in Korea with chemical anchor connection", MATEC Web of Conferences, 186, 02008.
- Simpson, M.A. (1976), Noise Barrier Design Handbook, (No. FHWA-RD-76-58), Department of Transportation, USA.
- Singh, T.N., Kanchan, R., Verma, A.K. and Saigal, K. (2005), "A comparative study of ANN and neuro-fuzzy for the prediction of dynamic constant of rockmass", J. Earth Syst. Sci., 114(1), 75-86. https://doi.org/10.1007/BF02702010.
- Sonmez, H., Gokceoglu, C., Nefeslioglu, H.A. and Kayabasi, A. (2006), "Estimation of rock modulus: For intact rocks with an artificial neural network and for rock masses with a new empirical equation", Int. J. Rock Mech. Min. Sci., 43(2), 224-235. https://doi.org/10.1016/j.ijrmms.2005.06.007.
- Suhanek, M., Djurek, I. and Petosic, A. (2021), "Combination of boundary element method and genetic algorithm for optimization of T-shape noise barrier", Tehnicki Vjesnik, 28(1), 77-81. https://doi.org/10.17559/TV-20190930132137.
- Sun, Y., Xu, Y., Wang, X. and Zhu, H. (2020), "Experimental studies on column foot connections of novel fully enclosed noise barriers", J. Constr. Steel Res., 172, 106179. https://doi.org/10.1016/j.jcsr.2020.106179.
- Tokunaga, M., Sogabe, M., Santo, T. and Ono, K. (2016a), "Dynamic response evaluation of tall noise barrier on high speed railway structures", J. Sound Vib., 366, 293-308. https://doi.org/10.1016/j.jsv.2015.12.015.
- Tokunaga, M., Sogabe, M., Watanabe, T. and Tamai, S. (2016b), 土木学会. 構造工学論文集 62.
- Tokunaga, M., Sogabe, M., Watanabe, T., Santo, T. and Tamai, S. (2013), "Dynamic response characteristics of the tall noise barrier on railway structures during seismicity", Proceedings of the Thirteenth East Asia-Pacific Conference on Structural Engineering and Construction (EASEC-13), Sapporo, Japan, September.
- Toledo, R., Aznarez, J.J., Maeso, O. and Greiner, D. (2015), "Optimization of thin noise barrier designs using evolutionary algorithms and a dual BEM formulation", J. Sound Vib., 334, 219-238. https://doi.org/10.1016/j.jsv.2014.08.032.
- Turkeli, E., Karaca, Z. and Ozturk, H.T. (2017), "On the wind and earthquake response of reinforced concrete chimneys", Earthq. Struct., 12(5), 559-567. https://doi.org/10.12989/eas.2017.12.5.559.
- Wassef, W.G., John, P.E., Kulicki, M., Withiam, J.L., Voytko, P.E.E.P., D'appolonia, P. and Mertz, D. (2010), "Application of AASHTO LRFD specifications to design of sound barriers".
- Wen, Z.P., Chau, K.T. and Hu, Y.X. (2002), "Seismic fragility curves for wind designed-buildings in Hong Kong", Eds. Anson, M., Ko, J.M., Lam, E.S.S., Advances in Building Technology, Elsevier, Oxford.
- Xu, J., Spencer Jr. B.F., Lu, X., Chen, X. and Lu, L. (2017), "Optimization of structures subject to stochastic dynamic loading", Comput. Aid. Civil Infrastr. Eng., 32(8), 657-673. https://doi.org/10.1111/mice.12274.
- Zannin, P.H.T., do Nascimento, E.O., da Paz, E.C. and do Valle, F. (2018), "Application of artificial neural networks for noise barrier optimization", Environ., 5(12), 1-20. https://doi.org/10.3390/environments5120135.
- Zheng, J., Li, Q., Li, X. and Luo, Y. (2020), "Train-induced fluctuating pressure and resultant dynamic response of semi enclosed sound barriers", Shock Vib., 2020, Article ID 6901564, https://doi.org/10.1155/2020/6901564.