DOI QR코드

DOI QR Code

A well-balanced PCCU-AENO scheme for a sediment transport model

  • 투고 : 2021.09.05
  • 심사 : 2022.09.11
  • 발행 : 2022.09.25

초록

We develop in this work a new well-balanced preserving-positivity path-conservative central-upwind scheme for Saint-Venant-Exner (SVE) model. The SVE system (SVEs) under some considerations, is a nonconservative hyperbolic system of nonlinear partial differential equations. This model is widely used in coastal engineering to simulate the interaction of fluid flow with sediment beds. It is well known that SVEs requires a robust treatment of nonconservative terms. Some efficient numerical schemes have been proposed to overcome the difficulties related to these terms. However, the main drawbacks of these schemes are what follows: (i) Lack of robustness, (ii) Generation of non-physical diffusions, (iii) Presence of instabilities within numerical solutions. This collection of drawbacks weakens the efficiency of most numerical methods proposed in the literature. To overcome these drawbacks a reformulation of the central-upwind scheme for SVEs (CU-SVEs for short) in a path-conservative version is presented in this work. We first develop a finite-volume method of the first order and then extend it to the second order via the averaging essentially non oscillatory (AENO) framework. Our numerical approach is shown to be well-balanced positivity-preserving and shock-capturing. The resulting scheme could be seen as a predictor-corrector method. The accuracy and robustness of the proposed scheme are assessed through a carefully selected suite of tests.

키워드

과제정보

The authors would like to thank an anonymous referee for giving very helpful comments and suggestions that have greatly improved this paper.

참고문헌

  1. Audusse, E., Bouchut, F., Bristeau, M.O., Klein, R. and Perthame, B.(2004), "A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows", SIAM J. Sci. Comput., 25(6), 2050-2065. https://doi.org/10.1137/S1064827503431090.
  2. Audusse, E., Ung, P. and Challons, P. (2015), "A simple three-wave approximate riemann solver for the saint-venant-exner equations", Commun. Math. Sci., 13(5), 1317-1332. https://doi.org/10.4310/CMS.2015.v13.n5.a11
  3. Bakhtyar, R. Dastgheib, A., Roelvink, D. and Barry D.A. (2016), "Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part II: Sediment Transport", Ocean Syst. Eng., 6(1), 61-97. https://doi.org/10.12989/ose.2016.6.1.023
  4. Barre de Saint-Venant, A.J.C. (1871), "Theorie du mouvement non-permanent des eaux, avec application aux crues des rivi'ere et 'a l'introduction des mar'ees dans leur lit", Comptes Rendus de L'Acad'emie des Sciences, 73, 147-154.
  5. Barzegar, M. and Palaniappan, D. (2020),"Numerical study on the performance of semicircular and rectangular submerged breakwaters", Ocean Syst. Eng., 10(2), 201-226. https://doi.org/10.12989/ose.2020.10.2.201.
  6. Benkhaldoun, F., Sari, S. and Seaid, M. (2012), "A flux-limiter method for dam-break flows over erodible sediment beds", Appl. Math. Model., 36(10), 4847-4861. https://doi.org/10.1016/j.apm.2011.11.088.
  7. Berthon, C., Cordier, S., Delestre, O. and Le, M.H. (2012), "An analytical solution of the Shallow Water system coupled to the Exner equation", Comptes Rendus Mathematique, 350(3-4), 183-186. https://doi.org/10.1016/j.crma.2012.01.007.
  8. Bhole, A., Nkonga, B., Gavrilyuk, S. and Ivanova, K. (2019), "Fluctuation splitting Riemann solver for a non-conservative modeling of shear shallow water flow", J. Comput. Phys., 392, 205-226. https://doi.org/10.1016/j.jcp.2019.04.033.
  9. Bordbar, A., Sharifi, S. and Hemida, H. (2021), "Prediction of scour around single vertical piers with different cross-section shapes", Ocean Syst. Eng., 11(1), 43-58. https://doi.org/10.12989/ose.2021.11.1.043.
  10. Carraro, F., Valiani, A. and Caleffi, V. (2018), "Efficient analytical implementation of the DOT Riemann solver for the de Saint Venant-Exner morphodynamic model", Adv. Water Resour., 113, 189-201. https://doi.org/10.1016/j.advwatres.2018.01.011.
  11. Chertock. A., Cui, S., Kurganov, A. and Wu, T. (2015), "Steady state and system preserving semiimplicit Runge-Kutta methods for ODEs with stiff damping term", Int. J. Numer. Meth Fl., 78, 355-383. https://doi.org/10.1002/fld.4023
  12. Dal Maso, G., Lefloch, P.G. and Murat, F. (1995), "Definition and weak stability of nonconservative products", J. Math. Pures Appl., 74(6), 483-548.
  13. Diaz, M.J.C., Fernandez Nieto, E.D. and Ferreiro, A.M. (2009), "High order extension of Roe schemes for two dimensioal non conservative hyperbolic systems", J. Sci. Comput., 39, 67-114. https://doi.org/10.1007/s10915-008-9250-4.
  14. Diaz, M.J.C., Kurganov, A. and Luna, T.M. de (2019), "Path conservative central-upwind for non conservative hyperbolic systems", ESAIM: M2AN, 53(3), 959-985. https://doi.org/10.1051/m2an/2018077.
  15. Dumbser, M. and Balsara, D.S. (2016), "A new efficient formulation of the HLLEM riemann solver for general conservative and non-conservative hyperbolic systems", J. Comput. Phys., 304, 275-319. https://doi.org/10.1016/j.jcp.2015.10.014
  16. Dyakonova T. and Khoperskov, A. (2018), "Bottom friction models for shallow water equations: Manning's roughness coefficient and small-scale bottom heregeneity", J. Phys. Conference series, 973(1), 012032, https://doi.org/10.1088/1742-6596/973/1/012032.
  17. Exner, F.M.(1925), "Uber die Wechselwirkung zwischen Wasser und Geschiebe in Fl ussen", Akademie der Wissenschaften, Sitzungsberichte, 134, Wien, Austria.
  18. Gottlieb,S., Shu, C.W. and Tadmor, E. (2001), "Strong stability preserving high order time discretization methods", Siam Rev., 43(1). https://doi.org/10.1137/S003614450036757X.
  19. Grass, A.J. (1981), "Sediment transport by waves and currents", Department of civil engineering, University college, London.
  20. Gunawan, H.P. (2015), "Numerical simulation of shallow water equations and related models", General Mathematics [math.GM], Universit'e Paris-Est. English. NNT : 2015PEST1010ff. tel-01216642v2ff.
  21. Guozhen, C., Luo, M., Zhaoheng, W. and Khayyer, A. (2022), " SPH simulation of wave interaction with coastal structures", Ocean Syst. Eng., 12(3), 285-300. https://doi.org/10.12989/ose.2022.12.3.285.
  22. Harten, A., Lax P. and van Leer, B. (1982), "Upstream differencing and Godunov-type scheme for hyperbolic conservation laws, Upwind and High-Resolution Schemes", 53-79, https://doi.org/10.1007/978-3- 642-60543-74.
  23. Hudson, J. and Sweby, P.K. (2003), "Formations for numerically approximating hyperbolic systems governing sediment transport", J. Sci. Comput., 19, 225-252. https://doi.org/10.1023/A:1025304008907.
  24. Kalita H.M. (2022), "An efficient 1D hybrid numerical model for bed morphology calculations in Alluvial Channels", Iran J. Sci. Technol. Trans. Civ Eng., https://doi.org/10.1007/s40996-022-00977-9.
  25. Kurganov, A. (2018), "Finite volume schemes for shallow-water equations", 27, Acta Numerica, 289-351. https://doi.org/10.1017/S0962492918000028.
  26. Kurganov, A. and Tadmor, E. (2000), "New high-resolution central-schemes for nonlinear conservation laws and convection-diffusion equations", J. Comput. Phys., 160(1), 241-282. https://doi.org/10.1006/jcph.2000.6459.
  27. Liu, X., Mohammadian, A. and Infante Sedano, J.A. (2012), "One dimensional numerical simulation of bed changes in irrigation channels using finite volume method", Irrigat Drainage Sys. Eng., 1, 103. https://doi.org/10.4172/2168-9768.1000103.
  28. Liu, X., Mohammadian, A., Kurganov, A and Infante Sedano, J.A. (2015), "Well-balanced central-upwind scheme for a fully coupled shallow water system modeling flows over erodible bed", J. Comput. Phys., 300, 202-218. https://doi.org/10.1016/j.jcp.2015.07.043
  29. Moungnutu, I., Ngtacha, A. and Njifenjou, A. (2022), "Stabilization of a finite solution for 1D Shallow Water problems", Preprint ResearchGate, October 2022, https://doi.org/10.13140/RG.2.2. 32013.82403.
  30. Ngatcha, A., Nkonga, B. and Njifenjou, A. (2022a), "Finite volume AENO methods with flux time-steps discretization procedure for a averaged sediment transport model", In 2022. hal-03668098.
  31. Ngatcha, A., Nkonga, B., Njifenjou, A. and Onguene, R. (2022b), "Sediment transport models in Generalized shear shallow water flow equations", Colloque Africain sur la recherche en informatiqe et en mathematiques appliquees, Oct 2022, Dschang, Cameroon. .
  32. Njifenjou, A. (2022a), "Overview on conventional finite volumes for elliptic problems involving discontinuous diffusion coefficients. Part 1: Focus on the one dimension space models", ResearchGate, https://doi.org/10.13140/RG.2.2. 27472.17925.
  33. Njifenjou, A. (2022b), "Geometric arguments for proving the discrete maximum principle met by conventional finite volume schemes in the context of isotropic diffusion problems", ResearchGate, https://doi.org/10.13140/RG.2.2.16845.5168.
  34. Pares, C. (2006), "Numerical methods for nonconservative hyperbolic systems: A theoretical framework", SIAM J. Numer. Anal., 44, 300-321. https://doi.org/10.1137/050628052
  35. Roe, P.L. (1986), "Upwinding difference schemes for hyperbolic conservation Laws with source terms", In Carasso, Raviart and Serre, editors, proceeding the conference on hyperbolic problems, 41-51.
  36. Rosatti, G. and Fraccarolo, L. (2006), "A well-balanced approach for flows over mobile-bed with high sediment transport", J. Comput. Phys., 220(1), 312-338. https://doi.org/10.1016/j.jcp.2006.05.012.
  37. Siviglia, A., Vanzo, D. and Toro, E.F. (2021), "A splitting scheme for the coupled Saint-Venant-Exner model", Adv. Water Resour., 159, 104062. https://doi.org/10.1016/j.advwatres.2021.104062.
  38. Toro, E.F., Santaca, A., Montecinos, G.I., Muller, L.O. (2021), "AENO: a novel reconstruction method in conjunction with ADER schemes for hyperbolic equations", Commun. Appl. Math. Comput., https://doi.org/10.1007/s42967-021-00147-0.
  39. Volpert, A.I. (1967), The spaces BV and quasilinear equations, Mathematics of the USSR-Sbornik,2 (1967), 225-267. https://doi.org/10.1070/SM1967v002n02ABEH002340
  40. Wu, W. and Wang, S.S. (2007), "One-dimensional modelling of dam-break flow over movable beds", J. Hydraulic Eng., 133, 48-58. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:1(48)