Acknowledgement
The authors would like to thank an anonymous referee for giving very helpful comments and suggestions that have greatly improved this paper.
References
- Audusse, E., Bouchut, F., Bristeau, M.O., Klein, R. and Perthame, B.(2004), "A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows", SIAM J. Sci. Comput., 25(6), 2050-2065. https://doi.org/10.1137/S1064827503431090.
- Audusse, E., Ung, P. and Challons, P. (2015), "A simple three-wave approximate riemann solver for the saint-venant-exner equations", Commun. Math. Sci., 13(5), 1317-1332. https://doi.org/10.4310/CMS.2015.v13.n5.a11
- Bakhtyar, R. Dastgheib, A., Roelvink, D. and Barry D.A. (2016), "Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part II: Sediment Transport", Ocean Syst. Eng., 6(1), 61-97. https://doi.org/10.12989/ose.2016.6.1.023
- Barre de Saint-Venant, A.J.C. (1871), "Theorie du mouvement non-permanent des eaux, avec application aux crues des rivi'ere et 'a l'introduction des mar'ees dans leur lit", Comptes Rendus de L'Acad'emie des Sciences, 73, 147-154.
- Barzegar, M. and Palaniappan, D. (2020),"Numerical study on the performance of semicircular and rectangular submerged breakwaters", Ocean Syst. Eng., 10(2), 201-226. https://doi.org/10.12989/ose.2020.10.2.201.
- Benkhaldoun, F., Sari, S. and Seaid, M. (2012), "A flux-limiter method for dam-break flows over erodible sediment beds", Appl. Math. Model., 36(10), 4847-4861. https://doi.org/10.1016/j.apm.2011.11.088.
- Berthon, C., Cordier, S., Delestre, O. and Le, M.H. (2012), "An analytical solution of the Shallow Water system coupled to the Exner equation", Comptes Rendus Mathematique, 350(3-4), 183-186. https://doi.org/10.1016/j.crma.2012.01.007.
- Bhole, A., Nkonga, B., Gavrilyuk, S. and Ivanova, K. (2019), "Fluctuation splitting Riemann solver for a non-conservative modeling of shear shallow water flow", J. Comput. Phys., 392, 205-226. https://doi.org/10.1016/j.jcp.2019.04.033.
- Bordbar, A., Sharifi, S. and Hemida, H. (2021), "Prediction of scour around single vertical piers with different cross-section shapes", Ocean Syst. Eng., 11(1), 43-58. https://doi.org/10.12989/ose.2021.11.1.043.
- Carraro, F., Valiani, A. and Caleffi, V. (2018), "Efficient analytical implementation of the DOT Riemann solver for the de Saint Venant-Exner morphodynamic model", Adv. Water Resour., 113, 189-201. https://doi.org/10.1016/j.advwatres.2018.01.011.
- Chertock. A., Cui, S., Kurganov, A. and Wu, T. (2015), "Steady state and system preserving semiimplicit Runge-Kutta methods for ODEs with stiff damping term", Int. J. Numer. Meth Fl., 78, 355-383. https://doi.org/10.1002/fld.4023
- Dal Maso, G., Lefloch, P.G. and Murat, F. (1995), "Definition and weak stability of nonconservative products", J. Math. Pures Appl., 74(6), 483-548.
- Diaz, M.J.C., Fernandez Nieto, E.D. and Ferreiro, A.M. (2009), "High order extension of Roe schemes for two dimensioal non conservative hyperbolic systems", J. Sci. Comput., 39, 67-114. https://doi.org/10.1007/s10915-008-9250-4.
- Diaz, M.J.C., Kurganov, A. and Luna, T.M. de (2019), "Path conservative central-upwind for non conservative hyperbolic systems", ESAIM: M2AN, 53(3), 959-985. https://doi.org/10.1051/m2an/2018077.
- Dumbser, M. and Balsara, D.S. (2016), "A new efficient formulation of the HLLEM riemann solver for general conservative and non-conservative hyperbolic systems", J. Comput. Phys., 304, 275-319. https://doi.org/10.1016/j.jcp.2015.10.014
- Dyakonova T. and Khoperskov, A. (2018), "Bottom friction models for shallow water equations: Manning's roughness coefficient and small-scale bottom heregeneity", J. Phys. Conference series, 973(1), 012032, https://doi.org/10.1088/1742-6596/973/1/012032.
- Exner, F.M.(1925), "Uber die Wechselwirkung zwischen Wasser und Geschiebe in Fl ussen", Akademie der Wissenschaften, Sitzungsberichte, 134, Wien, Austria.
- Gottlieb,S., Shu, C.W. and Tadmor, E. (2001), "Strong stability preserving high order time discretization methods", Siam Rev., 43(1). https://doi.org/10.1137/S003614450036757X.
- Grass, A.J. (1981), "Sediment transport by waves and currents", Department of civil engineering, University college, London.
- Gunawan, H.P. (2015), "Numerical simulation of shallow water equations and related models", General Mathematics [math.GM], Universit'e Paris-Est. English. NNT : 2015PEST1010ff. tel-01216642v2ff.
- Guozhen, C., Luo, M., Zhaoheng, W. and Khayyer, A. (2022), " SPH simulation of wave interaction with coastal structures", Ocean Syst. Eng., 12(3), 285-300. https://doi.org/10.12989/ose.2022.12.3.285.
- Harten, A., Lax P. and van Leer, B. (1982), "Upstream differencing and Godunov-type scheme for hyperbolic conservation laws, Upwind and High-Resolution Schemes", 53-79, https://doi.org/10.1007/978-3- 642-60543-74.
- Hudson, J. and Sweby, P.K. (2003), "Formations for numerically approximating hyperbolic systems governing sediment transport", J. Sci. Comput., 19, 225-252. https://doi.org/10.1023/A:1025304008907.
- Kalita H.M. (2022), "An efficient 1D hybrid numerical model for bed morphology calculations in Alluvial Channels", Iran J. Sci. Technol. Trans. Civ Eng., https://doi.org/10.1007/s40996-022-00977-9.
- Kurganov, A. (2018), "Finite volume schemes for shallow-water equations", 27, Acta Numerica, 289-351. https://doi.org/10.1017/S0962492918000028.
- Kurganov, A. and Tadmor, E. (2000), "New high-resolution central-schemes for nonlinear conservation laws and convection-diffusion equations", J. Comput. Phys., 160(1), 241-282. https://doi.org/10.1006/jcph.2000.6459.
- Liu, X., Mohammadian, A. and Infante Sedano, J.A. (2012), "One dimensional numerical simulation of bed changes in irrigation channels using finite volume method", Irrigat Drainage Sys. Eng., 1, 103. https://doi.org/10.4172/2168-9768.1000103.
- Liu, X., Mohammadian, A., Kurganov, A and Infante Sedano, J.A. (2015), "Well-balanced central-upwind scheme for a fully coupled shallow water system modeling flows over erodible bed", J. Comput. Phys., 300, 202-218. https://doi.org/10.1016/j.jcp.2015.07.043
- Moungnutu, I., Ngtacha, A. and Njifenjou, A. (2022), "Stabilization of a finite solution for 1D Shallow Water problems", Preprint ResearchGate, October 2022, https://doi.org/10.13140/RG.2.2. 32013.82403.
- Ngatcha, A., Nkonga, B. and Njifenjou, A. (2022a), "Finite volume AENO methods with flux time-steps discretization procedure for a averaged sediment transport model", In 2022. hal-03668098.
-
Ngatcha, A., Nkonga, B., Njifenjou, A. and Onguene, R. (2022b), "Sediment transport models in Generalized shear shallow water flow equations", Colloque Africain sur la recherche en informatiqe et en mathematiques appliquees, Oct 2022, Dschang, Cameroon.
. - Njifenjou, A. (2022a), "Overview on conventional finite volumes for elliptic problems involving discontinuous diffusion coefficients. Part 1: Focus on the one dimension space models", ResearchGate, https://doi.org/10.13140/RG.2.2. 27472.17925.
- Njifenjou, A. (2022b), "Geometric arguments for proving the discrete maximum principle met by conventional finite volume schemes in the context of isotropic diffusion problems", ResearchGate, https://doi.org/10.13140/RG.2.2.16845.5168.
- Pares, C. (2006), "Numerical methods for nonconservative hyperbolic systems: A theoretical framework", SIAM J. Numer. Anal., 44, 300-321. https://doi.org/10.1137/050628052
- Roe, P.L. (1986), "Upwinding difference schemes for hyperbolic conservation Laws with source terms", In Carasso, Raviart and Serre, editors, proceeding the conference on hyperbolic problems, 41-51.
- Rosatti, G. and Fraccarolo, L. (2006), "A well-balanced approach for flows over mobile-bed with high sediment transport", J. Comput. Phys., 220(1), 312-338. https://doi.org/10.1016/j.jcp.2006.05.012.
- Siviglia, A., Vanzo, D. and Toro, E.F. (2021), "A splitting scheme for the coupled Saint-Venant-Exner model", Adv. Water Resour., 159, 104062. https://doi.org/10.1016/j.advwatres.2021.104062.
- Toro, E.F., Santaca, A., Montecinos, G.I., Muller, L.O. (2021), "AENO: a novel reconstruction method in conjunction with ADER schemes for hyperbolic equations", Commun. Appl. Math. Comput., https://doi.org/10.1007/s42967-021-00147-0.
- Volpert, A.I. (1967), The spaces BV and quasilinear equations, Mathematics of the USSR-Sbornik,2 (1967), 225-267. https://doi.org/10.1070/SM1967v002n02ABEH002340
- Wu, W. and Wang, S.S. (2007), "One-dimensional modelling of dam-break flow over movable beds", J. Hydraulic Eng., 133, 48-58. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:1(48)