DOI QR코드

DOI QR Code

Effect of Fermented Benincasa hispida cong. Extract on Promotion of Osteoblast Differentiation and Inhibition of Osteoclast Generation

동과 발효물의 조골세포 분화 촉진 및 파골세포 생성 억제 효과

  • Received : 2022.08.23
  • Accepted : 2022.09.16
  • Published : 2022.10.30

Abstract

The bones of the human body support the structures of the body and provide protection for a person's internal organs. Bone metabolic diseases are on the rise due to a significant increase in life expectancy over a short period of time. Therefore, we investigated the osteoblast differentiation promoting and osteoclastogenesis inhibitory activities of fermented Benincasa hispida cong. (HR1901-BS, HR1901-BSaf). We evaluated the alkaline phosphatase (ALP) activity of MC3T3-E1 mouse calvarial-derived osteoblasts. We also evaluated expression of ALP, osteocalcin (OCN), and runt-related transcription factor 2 (Runx2), which regulate osteoblast differentiation. To assess effects on osteoclast formation, tartrate-resistant acid phosphatase (TRAP) activity in RAW264.7 cells was analyzed. ALP activity increased by 121-136% and 140-156%, respectively in the presence of HR1901-BS and HR1901-BSaf. Expression of osteoblast differentiation factor also increased significantly. We also confirmed that HR1901-BS and HR1901-BSaf decreased TRAP activity in osteoclasts by 35-47% and 23-39%, respectively. Our results showed that fermented Benincasa hispida cong. (HR1901-BS, HR1901-BSaf) increase bone mineralization and osteoblast differentiation activity in MC3T3-E1 cells, and inhibit bone resorption activity in RAW264.7 cells. In conclusion, fermented Benincasa hispida cong. (HR1901-BS, HR1901-BSaf) can be used as an effective natural resource for preventing and treating bone-related diseases.

본 연구는 천연물의 효능을 미생물을 이용하여 증가시키거나 새로운 효능을 도출하고자 하는 연구를 통해 Bacillus subtilis CJH 101 및 Bacillus safensis CJH 102 로 발효한 동과 발효물(HR1901-BS, HR1901-BSaf)의 뼈 건강 관련 효능을 평가하였다. 뼈를 형성하는 조골세포의 증식을 비교한 결과, 동과 발효물은 조골세포의 증식을 농도 유의적으로 증가시키는 것으로 나타났으며 조골세포 분화 유도 및 무기질화에 관여하는 ALP 활성을 효과적으로 촉진시켰다. 또한 조골세포 분화를 조절하는 전사 인자인 ALP, OCN, Runx2의 발현이 증가됨을 확인하였다. 뼈를 흡수하는 파골세포의 활성을 확인하기 위해 TRAP 활성을 측정한 결과 동과 발효물은 TRAP 활성을 유의적으로 억제하는 것을 확인하였다. 따라서 동과 발효물(HR1901-BS, HR1901-BSaf)은 조골세포의 활성 증가 및 파골세포의 활성 억제를 통해 골대사에 긍정적인 영향을 미치므로 뼈 대사 및 골다공증 관련 기능성 식품 소재로 활용 가능할 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 2021년도 중소벤처기업부의 중소기업기술개발사업(S3206438)의 지원으로 수행되었으며 이에 감사드립니다.

References

  1. Frost, H.M., Dynamics of bone remodeling. Bone biodynamics, 315-334 (1964).
  2. Feng, X., McDonald, J.M., Disorders of bone remodeling. Annu. Rev. Pathol., 6, 121 (2011). https://doi.org/10.1146/annurev-pathol-011110-130203
  3. Papachroni, K.K., Karatzas, D.N., Papavassiliou, K.A., Basdra, E.K., Papavassiliou, A.G., Mechanotransduction in osteoblast regulation and bone disease. Trends Mol. Med., 15, 208-216 (2009). https://doi.org/10.1016/j.molmed.2009.03.001
  4. Zhu, L., Tang, Y., Li, X.Y., Keller, E.T., Yang, J., Cho, J.S., Weiss, S.J., Osteoclast-mediated bone resorption is controlled by a compensatory network of secreted and membrane-tethered metalloproteinases. Sci. Transl. Med., 12, eaaw6143 (2020). https://doi.org/10.1126/scitranslmed.aaw6143
  5. Blair, H.C., Larrouture, Q.C., Li, Y., Lin, H., Beer-Stoltz, D., Liu, L., Nelson, D.J., Osteoblast differentiation and bone matrix formation in vivo and in vitro. Tissue Eng. Part B Rev., 23, 268-280 (2017). https://doi.org/10.1089/ten.teb.2016.0454
  6. Charles, J.F., Aliprantis, A.O., Osteoclasts: more than 'bone eaters'. Trends Mol. Med., 20, 449-459 (2014). https://doi.org/10.1016/j.molmed.2014.06.001
  7. Sozen, T., Ozisik, L., Basaran, N.C., An overview and management of osteoporosis. Eur. J. Rheumatol., 4, 46 (2017). https://doi.org/10.5152/eurjrheum.2016.048
  8. Nanjing University of Chinese Medicine, Dictionary of Traditional Chinese Medicine, Shanghai Science and Technology Press, 2006.
  9. Mohammad, N.A., Anwar, F., Mehmood, T., Hamid, A.A., Muhammad, K., Saari, N., Phenolic compounds, tocochromanols profile and antioxidant properties of winter melon [Benincasa hispida (Thunb.) Cogn.] seed oils. J. Food Meas. Charact., 13, 940-948 (2019). https://doi.org/10.1007/s11694-018-0008-x
  10. Sew, C.C., Zaini, N.A.M., Anwar, F., Hamid, A.A., Saari, N., Nutritional composition and oil fatty acids of kundur [Benincasa hispida (Thunb.) Cogn.] seed. Pak. J. Bot., 42, 3247-3255 (2010).
  11. Moon, C.J., (2006). Coloured illustration for discrimination of herbal medicine IV. Korea Food & Drug Administration p. 38.
  12. Lee, K.H., Choi, H.R., Kim, C.H., Anti-angiogenic effect of the seed extract of Benincasa hispida Cogniaux. J. Ethnopharmacol., 97, 509-513 (2005). https://doi.org/10.1016/j.jep.2004.12.008
  13. Rachchh, M.A., Jain, S.M. Gastroprotective effect of Benincasa hispida fruit extract. Indian J. Pharmacol., 40, 271 (2008). https://doi.org/10.4103/0253-7613.45154
  14. Shetty, B.V., Arjuman, A., Jorapur, A., Samanth, R., Yadav, S. K., Valliammai, N., Rao, G. M., Effect of extract of Benincasa hispida on oxidative stress in rats with indomethacin induced gastric ulcers. Indian J. Pharmacol., 52, 178-182 (2008).
  15. Mandana, B., Russly, A.R., Farah, S.T., Noranizan, M.A., Zaidul, I.S., Ali, G., Antioxidant activity of winter melon (Benincasa hispida) seeds using conventional Soxhlet extraction technique. Int. Food Res. J., 19, 229-234 (2012).
  16. Moon, M.K., Kang, D.G., Lee, Y.J., Kim, J.S., Lee, H.S., Effect of Benincasa hispida Cogniaux on high glucoseinduced vascular inflammation of human umbilical vein endothelial cells. Vasc. Pharmacol., 50, 116-122 (2009). https://doi.org/10.1016/j.vph.2008.11.007
  17. Lim, S.J., Effects of fractions of Benincasa hispida on antioxidative status in streptozotocin induced diabetic rats. J. Nutr. Health., 40, 295-302 (2007).
  18. Perkins, C., Siddiqui, S., Puri, M., Demain, A.L., (2016). Biotechnological applications of microbial bioconversions. Crit. Rev. Biotechnol., 36, 1050-1065. https://doi.org/10.3109/07388551.2015.1083943
  19. Kiran, E.U., Trzcinski, A.P., Ng, W.J., Liu, Y., Bioconversion of food waste to energy: A review. Fuel, 134, 389-399 (2014). https://doi.org/10.1016/j.fuel.2014.05.074
  20. Sanchez, S., Demain, A.L., Enzymes and bioconversions of industrial, pharmaceutical, and biotechnological significance. Org. Process Res. Dev., 15, 224-230 (2011). https://doi.org/10.1021/op100302x
  21. Adler, C.P., Bone diseases: macroscopic, histological, and radiological diagnosis of structural changes in the skeleton. Springer Science & Business Media (2013).
  22. Long, F., Building strong bones: molecular regulation of the osteoblast lineage. Nat. Rev. Mol. Cell Biol., 13, 27-38 (2012). https://doi.org/10.1038/nrm3254
  23. Wang, D., Christensen, K., Chawla, K., Xiao, G., Krebsbach, P. H., Franceschi, R.T., Isolation and characterization of MC3T3?E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J. Bone Miner. Res., 14, 893-903 (1999). https://doi.org/10.1359/jbmr.1999.14.6.893
  24. Sudo, H., Kodama, H.A., Amagai, Y., Yamamoto, S., Kasai, S., In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J. Cell Biol., 96, 191-198 (1983). https://doi.org/10.1083/jcb.96.1.191
  25. Golub, E.E., Boesze-Battaglia, K., The role of alkaline phosphatase in mineralization. Curr. Opin. Orthop., 18, 444-448 (2007). https://doi.org/10.1097/BCO.0b013e3282630851
  26. Gronthos, S., Zannettino, A.C., Graves, S.E., Ohta, S., Hay, S.J., Simmons, P.J., Differential cell surface expression of the STRO-1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bone cells. J. Bone Miner. Res., 14, 47-56 (1999). https://doi.org/10.1359/jbmr.1999.14.1.47
  27. Moon, K., Lee, S., Cha, J., Bacillus subtilis fermentation of Malva verticillata leaves enhances antioxidant activity and osteoblast differentiation. Foods, 9, 671 (2020). https://doi.org/10.3390/foods9050671
  28. Jensen, E.D., Gopalakrishnan, R., Westendorf, J.J., Regulation of gene expression in osteoblasts. Biofactors, 36, 25-32 (2010).
  29. Stein, G.S., Lian, J.B., Van Wijnen, A.J., Stein, J.L., Montecino, M., Javed, A., Pockwinse, S.M., Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene, 23, 4315-4329 (2004). https://doi.org/10.1038/sj.onc.1207676
  30. Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Kishimoto, T., Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 89, 755-764 (1997). https://doi.org/10.1016/S0092-8674(00)80258-5
  31. Long, F., Building strong bones: molecular regulation of the osteoblast lineage. Nat. Rev. Mol. Cell Biol., 13, 27-38 (2012). https://doi.org/10.1038/nrm3254
  32. Gronthos, S., Zannettino, A.C., Graves, S.E., Ohta, S., Hay, S.J., Simmons, P.J., Differential cell surface expression of the STRO-1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bone cells. J. Bone Miner. Res., 14, 47-56 (1999). https://doi.org/10.1359/jbmr.1999.14.1.47
  33. Poulsen, R.C., Kruger, M.C., Soy phytoestrogens: impact on postmenopausal bone loss and mechanisms of action. Nutr. Rev., 66, 359-374 (2008). https://doi.org/10.1111/j.1753-4887.2008.00046.x
  34. Abdi, F., Alimoradi, Z., Haqi, P., Mahdizad, F., Effects of phytoestrogens on bone mineral density during the menopause transition: a systematic review of randomized, controlled trials. Climacteric, 19, 535-545 (2016). https://doi.org/10.1080/13697137.2016.1238451
  35. Uchiyama, S., Yamaguchi, M., Genistein and zinc synergistically enhance gene expression and mineralization in osteoblastic MC3T3-E1 cells. Int. J. Mol. Med., 19, 213-220 (2007).
  36. Ming, L.G., Chen, K.M., Xian, C.J., Functions and action mechanisms of flavonoids genistein and icariin in regulating bone remodeling. J. Cell. Physiol., 228, 513-521 (2013). https://doi.org/10.1002/jcp.24158
  37. Lee, S.H., Kim, J.K., Jang, H.D., Genistein inhibits osteoclastic differentiation of RAW 264.7 cells via regulation of ROS production and scavenging. Int. J. Mol. Sci., 15, 10605-10621 (2014). https://doi.org/10.3390/ijms150610605
  38. Li, B., Yu, S., Genistein prevents bone resorption diseases by inhibiting bone resorption and stimulating bone formation. Biol. Pharm. Bull., 26(6), 780-786 (2003). https://doi.org/10.1248/bpb.26.780
  39. Teitelbaum, S.L., Bone resorption by osteoclasts. Science, 289, 1504-1508 (2000). https://doi.org/10.1126/science.289.5484.1504
  40. Ross, F.P., M-CSF, c-Fms, and signaling in osteoclasts and their precursors. Ann. N. Y. Acad. Sci., 1068, 110-116 (2006). https://doi.org/10.1196/annals.1346.014