DOI QR코드

DOI QR Code

프로바이오틱스 Lacticaseibacillus rhamnosus LRH020의 미생물막 형성 평가

Assessment of biofilm formation of Lacticaseibacillus rhamnosus LRH020

  • 투고 : 2022.06.30
  • 심사 : 2022.10.13
  • 발행 : 2022.10.30

초록

병원성 미생물에 의한 감염을 일으키는 주요 독성인자 중 하나인 응집 물질은 자가응집 및 미생물막 형성으로 인체 건강에 부정적인 영향을 미칠 수 있다. 본 연구에서 Lacticaseibacillus rhamnosus LRH020 (DSM25568) 균주의 독성 유전자 분석을 통해 asa1 유전자를 확인하였고, 표현형으로의 발현 여부 확인을 위하여 미생물막 형성능과 자가응집능 활성실험을 진행하였다. 실험결과 LRH020은 양성대조군 Escherichia. faecalis ATCC 19433과 비교하였을 때 유의적으로 미생물막 형성능이 낮으며, 비교균주 Lacticaseibacillus rhamnosus GG (LGG)와 자가응집능에 차이가 없음을 확인하였다. 균주 LRH020은 asa1 유전자는 가지고 있으나, 표현형으로는 상업균주 LGG와 유사함으로 잠재적인 프로바이오틱스로서의 안전성을 확인하였다.

Biofilms are complexly structured communities of microorganisms composed of surface-attached microorganisms, where their effects on the host have been controversial. In this study, we investigated the potential biofilm-forming capacity of Lacticaseibacillus rhamnosus LRH020 (DSM25568) by detecting genes known to promote biofilm formation. It was shown that the aggregation substance gene (asa 1) was presented in the LRH020 strain. Therefore, we investigated the phenotypic activities of the gene asa1 via two methods: biofilm formation and auto-aggregation activity. It was shown that the strain LRH020 had significantly less ability to form biofilm compared to the positive control strain Enterococcus faecalis ATCC 19433. Furthermore, LRH020 exhibited biofilm-forming activity comparable to Lacticaseibacillus rhamnosus GG (LGG), widely used probiotics. The auto-aggregation activity of LRH020 was also within the safe range similar to that of LGG. In conclusion, this study shows that both biofilm-forming and auto-aggregation activities of the LRH020 are comparable to one of the most studied probiotics strains, LGG.

키워드

참고문헌

  1. Lewis, K., Riddle of biofilm resistance. Antimicrob Agents Chemother., 45, 999-1007 (2001). https://doi.org/10.1128/AAC.45.4.999-1007.2001
  2. Meroni, G., Panelli, S., Zuccotti, G., Bandi, C., Drago, L., Pistone, D., Probiotics as therapeutic tools against pathogenic biofilms: have we found the perfect weapon?, Microbiol, Res., 12, 916-937 (2021). https://doi.org/10.3390/microbiolres12040068
  3. Olsen, I., Biofilm-specific antibiotic tolerance and resistance. Eur, J, Clin, Microbiol Infect Dis., 34, 877-886 (2015). https://doi.org/10.1007/s10096-015-2323-z
  4. Kiruthiga, A., Padmavathy, K., Shabana, P., Naveenkumar, V., Gnanadesikan, S., Malaiyan, J., Improved detection of esp, hyl, asa1, gelE, cylA virulence genes among clinical isolates of Enterococci. BMC Res Notes., 13, 170 (2020). https://doi.org/10.1186/s13104-020-05018-0
  5. Anderson, A.C., Jonas, D., Huber, I., Karygianni, L., Wolber, J., Hellwig, E., Arweiler, N., Vach, K., Wittmer, A., AlAhmad, A., Enterococcus faecalis from food, clinical specimens, and oral sites: prevalence of virulence factors in association with biofilm formation. Front Mirobiol, 6, 1534 (2015).
  6. Tsegahun Asfaw, Biofilm Formation by Enterococcus Faecalis and Enterococcus Faecium: Review. IJRBS., 7, 5-10 (2019).
  7. 이상길, 양경민, 천재희, 김태일, 김원호, Lipopolysaccharide 로 유도된 HT-29 세포주의 염증에서 Lactobacillus rhamnosus GG의 항염증 작용과 기전, Korea J Gastroenterol, 60(2), 86-93
  8. E.Nwachukwu, O.K. Achi, I.O. Ijeoma., Lactic acid bacteria in fermentation of cereals for the production of indigenous Nigerian foods. Afr. J. Food Sci., 2(1), 1-6 (2011).
  9. Chen, L.H., Zheng, D.D., Liu, B., Yang, J.A., Jin, Q., VFDB 2016: hierarchical and refined dataset for big data analysis10 years on., Nucleic Acids Res. 44, 694-697 (2016).
  10. Eladawy, M., El-Mowafy, M., El-Sokkary, M.M.A., Barwa, R., Effects of Lysozyme, Proteinase K, and Cephalosporins on Biofilm Formation by Clinical Isolates of Pseudomonas aeruginosa. Interdiscip Perspect Infect Dis., 2020, 9 (2020).
  11. Waters, C.M., Wells, C.L., Dunny, G.M., The Aggregation Domain of Aggregation substance, Not the RGD Motifs, Is Critical for Efficient Internalization by HT-29 Enterocytes. Infect Immun., 71(10), 5682-5689 (2003). https://doi.org/10.1128/IAI.71.10.5682-5689.2003
  12. Nath, S., Sikidar, J., Roy, M., Deb, B. In vitro screening of probiotic properties of Lactobacillus plantarum isolated from fermented milk product. Qual, Assur, Saf, Crop, Foods., 4, 213-223 (2020). https://doi.org/10.1093/fqsafe/fyaa026
  13. Mohamed, J.A., Huang, D.B., Biofilm formation by enterococci. J, Med, Microbiol., 56, 1581-1588 (2007). https://doi.org/10.1099/jmm.0.47331-0
  14. Salas-Jara, M.J., IIabaca, A., Vega, M., Garcia, A., Biofilm forming Lactobacillus: new challenges for the development of probiotics., Microorganisms, 4(3) 35 (2016). https://doi.org/10.3390/microorganisms4030035
  15. Campana, R., Hermert, S.V., Baffone, W., Strain-specific probiotic properties of lactic acid bacteria and their interference with human intestinal pathogens invasion. Gut Pathog., 9, 12 (2017). https://doi.org/10.1186/s13099-017-0162-4
  16. Jankovic, T., Frece, J., Abram, M., Gobin, I., Aggregation ability of potential probiotic Lactobacillus plantarum strains. IJSER., 6, 19-24 (2012).