Acknowledgement
Building model construction has been partially supported by Gatti Precorvi SRL, which provided the perforated metals. Authors gratefully acknowledge the contribution of the staff at GVPM - Politecnico di Milano Wind Tunnel who made the experiments possible.
References
- Allori, D., Bartoli, G. and Mannini, C. (2013), "Wind tunnel tests on macro-porous structural elements: A scaling procedure", J. Wind Eng. Ind. Aerod., 123, 291-299, https://doi.org/10.1016/j.jweia.2013.09.011.
- Belloli, M., Rosa, L. and Zasso A. (2014), "Wind loads and vortex shedding analysis on the effects of the porosity on a high slender tower", J. Wind Eng. Ind. Aerod., 126, 75-86, https://doi.org/10.1016/j.jweia.2014.01.004.
- Bergh, H. and Tijdeman H. (1965), Theoretical and Experimental Results for the Dynamic Response of Pressure Measuring Systems, Techincal Report, Nationall Lucht - EN Ruitmtevaartlaboratorium
- Bruno, L., Fransos, D., Coste, N., and Bosco, A. (2010), "3D flow around a rectangular cylinder: A computational study", J. Wind Eng. Ind. Aerod., 98(6-7), 263-276. https://doi.org/10.1016/j.jweia.2009.10.005.
- Choi, C.K. and Kwon, D.K. (2000), "Determination of the Strouhal number based on the aerody- namic behavior of rectangular cylinders", Wind Struct., 3(3), 209-220. https://doi.org/10.12989/was.2000.3.3.209
- Cook, N.J. and Mayne, J.R. (1979), "A novel working approach to the assessment of wind loads for equivalent static design", J. Phys. Conference Series, 4(2), 149-164. https://doi.org/10.1016/0167-6105(79)90043-6
- Farell, C. and Iyengar, A.K. (1999), "Experiments on the wind tunnel simulation of atmospheric boundary layers", J. Wind Eng. Ind. Aerod., 79(1-2), 11-35, https://doi.org/10.1016/S0167-6105(98)00117-2.
- Giachetti, A., Bartoli, G. and Mannini, C. (2019), "Wind effects on permeable tall building En- velopes", CTBUH J., 3, 20-27.
- Houska, C. (2013), "The use of stainless steel in second-skin facades", CTBUH J., 26-31.
- Hu, G., Hassanli, S., Kwok, K.C. and Tse, K.T. (2017), "Windinduced responses of a tall building with a double-skin facade system", J. Wind Eng. Ind. Aerod., 168, 91-100, https://doi.org/10.1016/j.jweia.2017.05.008.
- Jafari, M. and Alipour, A. (2021), "Aerodynamic shape optimization of rectangular and elliptical double-skin facades to mitigate wind-induced effects on tall buildings", J. Wind Eng. Ind. Aerod., 213, 104586. https://doi.org/10.1016/j.jweia.2021.104586
- Kemper, F.H. and Feldmann, M. (2019), "Wind load assumptions for permeable cladding elements considering the installation context", J. Wind Eng. Ind. Aerod., 184, 277-288. https://doi.org/10.1016/j.jweia.2018.10.011.
- Lamberti, G., Amerio, L., Pomaranzi, G., Zasso, A. and Gorle, C. (2020), "Comparison of high resolution pressure measurements on a high-rise building in a closed and open-section wind tunnel", J. Wind Eng. Ind. Aerod., 204, 104247. https://doi.org/10.1016/j.jweia.2020.104247
- Lawson, T.V. (1976), "The design of cladding", Build. Environ., 11(1), 37-38. https://doi.org/10.1016/0360-1323(76)90017-2
- Raine, Lee, S.J., and Kim, H.B. (1999), "Laboratory measurements of velocity and turbulence field behind porous fences", J. Wind Eng. Ind. Aerod., 80(3), 311-326. https://doi.org/10.1016/S0167-6105(98)00193-7
- Lo, Y.L., Wu, Y.T., Fu, C.L. and Yu, Y.C. (2020), "Wind load reduction effects on inner buildings by exterior porous facades", Build. Environ., 183, 107148. https://doi.org/10.1016/j.buildenv.2020.107148
- Nakaguchi, H. (1968), "An experimental study on aerodynamic drag of rectangular cylinders", J. JSASS, 16, 1-5.
- Pomaranzi, G., Daniotti, N., Schito, P., Rosa, L. and Zasso, A. (2020), "Experimental assessment of the effects of a porous double skin facade system on cladding loads", J. Wind Eng. Ind. Aerod., 196, 104019. https://doi.org/10.1016/j.jweia.2019.104019.
- Pomaranzi, G., Bistoni, O., Schito, P., Rosa, L. and Zasso, A. (2021), "Wind effects on a permeable double skin facade, the ENI head office case study", Fluids, 6(11), 415. https://doi.org/10.3390/fluids6110415
- Pomaranzi, G., Amerio, L., Schito, P., Lamberti, G., Gorle, C. and Zasso, A. (2022), "Wind tunnel pressure data analysis for peak cladding load estimation on a high-rise building", J. Wind Eng. Ind. Aerod., 220, 104855. https://doi.org/10.1016/j.jweia.2021.104855.
- Pomponi, F., Piroozfar, P.A., Southall, R., Ashton, P. and Farr, E. R. (2016), "Energy performance of Double-Skin Facades in temperate climates: A systematic review and meta-analysis", Renew. Sustain. Energy Rev., 54, 1525-1536. https://doi.org/10.1016/j.rser.2015.10.075.
- Price, P. (1956), "Suppression of the fluid-induced vibration of circular cylinders", J. Eng. Mech. Div., 82(3), 1030-1031, https://doi.org/10.1061/JMCEA3.0000008.
- Raine, J.K. and Stevenson, D.C. (1977), "Wind protection by model fences in a simulated atmo- spheric boundary layer", J. Wind Eng. Ind. Aerod., 2(2), 159-180. https://doi.org/10.1016/0167-6105(77)90015-0.
- Santiago, J.L., Martin, F., Cuerva, A., Bezdenejnykh, N. and Sanz-Andres, A. (2007), "Experimental and numerical study of wind flow behind windbreaks.", Atmos. Environ., 41(30), 6406- 6420. https://doi.org/10.1016/j.atmosenv.2007.01.014.
- Skvorc, P. and Kozmar, H. (2021), "Aerodynamic characteristics of tall buildings with porous double- skin facades: State of the art and future perspectives", Wind Struct., 33(3), 233-249. https://doi.org/10.12989/was.2021.33.3.233.
- Teimourian, A. and Teimourian, H. (2021), "Vortex shedding suppression: A review on modified bluff bodies", Eng, 2(3), 325-339. https://doi.org/10.3390/eng2030021.
- Zasso, A., Perotti, F., Rosa, L., Schito, P., Pomaranzi, G. and Daniotti, N. (2018), "Wind pressure distribution on a porous double skin facade system", Proceedings of the XV Conference of the Italian Association for Wind Engineering, 730-741, https://doi.org/10.1007/978-3-030-12815-9_55.