Acknowledgement
본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 RS-2022-00142566).
References
- Robinson, C. (2007) Structural BIM: Discussion, Case Studies and Latest Developments, Struct. Des. Tall Spec. Build., 16, 519-533. https://doi.org/10.1002/tal.417
- Bosche, F., Ahmed, M., Turkan, Y., Haas, C.T. and Haas, R. (2015) The value of integrating Scan-to-BIM and Scan-vs-BIM techniques for construction monitoring using laser scanning and BIM: The case of cylindrical MEP components, Autom. Constr, 49, 201-213. https://doi.org/10.1016/j.autcon.2014.05.014
- Patraucean V., Armeni I., Nahangi M., Yeung J., Brilakis I. and Haas C. (2015) State of research in automatic as-built modelling. Advanced Engineering Informatics, 29 (2), pp. 162-171. https://doi.org/10.1016/j.aei.2015.01.001
- Badenko, V., Fedotov, A., Zotov, D., Lytkin, S., Volgin, D., Garg, R. D. and Liu, M. (2019) Scan-to-BIM methodology adapted for different app lication, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci, 42 (5/W2), 1-7.
- He, Y., Liang, B., Yang, J., Li, S., and He, J. (2017) An Iterative Closest Points Algorithm for Registration of 3D Laser Scanner Point Clouds with Geometric Features, Sensors, 17( 8).
- Agarwal, S. and Bhowmick, B. (2017) 3D point cloud registration with shape constraint, 2017 IEEE International Conference on Image Processing, 17-20.
- Liu, J., Shang, X., Yang, S., Shen, Z., Liu, X., Xiong, G. and Nyberg, T.R. (2017) Research on Optimization of Point Cloud Registration ICP Algorithm, Image and Video Technology, 81-90.
- Qi, C.R., Su, H., Mo, K., and Guibas, L.J. (2016) Pointnet: Deep learning on point sets for 3D classification and segmentation. In Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR), 1, 4.
- Perez-Perez, Yeritza, Mani Golparvar-Fard, and Khaled El-Rayes. (2021) Scan2BIM-NET: deep learning method for segmentation of point clouds for scan-to-BIM, Journal of Construction Engineering and Management, 147, 9
- Yang L., Cheng J. C. and Wang Q. (2020) Semi-automated generation of parametric BIM for steel structures based on terrestrial laser scanning data. Automation in Construction, 112, 103037. https://doi.org/10.1016/j.autcon.2019.103037
- M.E. Esfahani, C. Rausch, M.M. Sharif, Q. Chen, C. Haas and B.T. Adey, (2021) Quantitative investigation on the accuracy and precision of scan-to-BIM under different modelling scenarios, Autom. Constr., 126.
- Park, J., Kim, J., Lee, D., Jeong, K., Lee, J., Kim, H., and Hong, T. (2022) Deep Learning-Based Automation of Scan-to-BIM with Modeling Objects from Occluded Point Clouds. Journal of Management in Engineering, 38(4), 04022025.
- Xie, X., Zhao, M., He, J., and Zhou, B. (2018) Automatic Processing Method for Deformation Monitoring of Circle Tunnels Based on 3D LiDAR Data. Preprints.
- P. Kontothanasis, V. Krommyda, and N. Roussos (2019) BIM and advanced computer-based tools for the design and construction of underground structures and tunnels, Tunnel Engineering-Selected Topics.
- Yang, L., Cheng, J. C., and Wang, Q. (2020) Semi-automated generation of parametric BIM for steel structures based on terrestrial laser scanning data. Automation in Construction, 112, 103037. https://doi.org/10.1016/j.autcon.2019.103037
- Qin, G., Zhou, Y., Hu, K., Han, D., and Ying, C. (2021) Automated reconstruction of parametric bim for bridge based on terrestrial laser scanning data. Advances in Civil Engineering, 2021.