Acknowledgement
This study is part of a Ph.D. research of the first author under the supervision of the second and third authors. The braced frame tests were carried out at the strong floor laboratory of the structural engineering department of the Road, Housing, and Urban Development Research Center of Iran. The authors wish to express their thanks to the engineering operators of the laboratory, for facilitating all the means in carrying out the experiments.
References
- AISC (2016), ANSI/AISC 341-16, Seismic Provisions for Structural Steel Buildings.
- AlHamaydeh, M., Abed, F. and Mustapha, A. (2016), "Key parameters influencing performance and failure modes for BRBs using nonlinear FEA", J. Constr. Steel Res., 116, 1-18. https://doi.org/10.1016/j.jcsr.2015.08.038.
- Andrews, B.M., Fahnestock, L.A. and Song, J. (2009), "Ductility capacity models for buckling-restrained braces", J. Constr. Steel Res., 65(8-9), 1712-1720. https://doi.org/10.1016/j.jcsr.2009.02.007.
- ASCE/SEI 41-17 (2017), Seismic Evaluation and Retrofit of Existing Buildings, Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineers.
- BSI Standards Limited (2016), Metallic Materials-Tensile Testing, In Metallic Materials-Tensile Testing Part 1: Method of Test at Room Temperature.
- Chen, Y., Chen, C., Jiang, H., Liu, T. and Wan, Z. (2019), "Study of an innovative graded yield metal damper", J. Constr. Steel Res., 160, 240-254. https://doi.org/10.1016/j.jcsr.2019.05.028.
- Cheraghi, A. and Zahrai, S.M. (2016), "Energy dissipation improvement in CBFs using perforated gusset plates", AJSR-Civil Envirom. Eng., 48(3), 339-349. https://doi.org/doi.org/10.22060/ceej.2016.616.
- Cheraghi, A. and Zahrai, S.M. (2016), "Innovative multi-level control with concentric pipes along brace to reduce seismic response of steel frames", J. Constr. Steel Res., 127, 120-135. https://doi.org/10.1016/j.jcsr.2016.07.024.
- Dassault Systems Simulia Corp. (2017), Abaqus/CAE 2017 User's Guide.
- De Stefani, L., Scotta, R. and Lazzari, M. (2015), "Optimal design of seismic retrofitting of RC frames with eccentric steel bracing", Bull. Earthq. Eng., 13(2), 613-633. https://doi.org/10.1007/s10518-014-9633-x.
- Della Corte, G., D'Aniello, M. and Landolfo, R. (2015), "Field testing of all-steel buckling-restrained braces applied to a damaged reinforced concrete building", J. Struct. Eng., 141(1), 1-11. https://doi.org/10.1061/(asce)st.1943-541x.0001080.
- Dusicka, P. and Tinker, J. (2013), "Global restraint in ultra-lightweight buckling-restrained braces", J. Compos. Constr., 17(1), 139-150. https://doi.org/10.1061/(asce)cc.1943-5614.0000320.
- Ebadi Jamkhaneh, M., Homaioon Ebrahimi, A. and Shokri Amiri, M. (2019), "Investigation of the seismic behavior of brace frames with new corrugated all-steel buckling restrained brace", Int. J. Steel Struct., 19(4), 1225-1236. https://doi.org/10.1007/s13296-018-00202-2.
- El-Bahey, S. and Bruneau, M. (2011), "Buckling restrained braces as structural fuses for the seismic retrofit of reinforced concrete bridge bents", Eng. Struct., 33(3), 1052-1061. https://doi.org/10.1016/j.engstruct.2010.12.027.
- Elghazouli, A.Y. (2003), "Seismic design procedures for concentrically braced frames", Proc. Inst. Civil Eng.: Struct. Build., 156(4), 381-394. https://doi.org/10.1680/stbu.2003.156.4.381.
- Giugliano, M.T., Longo, A., Montuori, R. and Piluso, V. (2010), "Plastic design of CB-frames with reduced section solution for bracing members", J. Constr. Steel Res., 66, 611-621. https://doi.org/10.1016/j.jcsr.2010.01.001.
- Hoveidae, N. and Rafezy, B. (2012), "Overall buckling behavior of all-steel buckling restrained braces", J. Constr. Steel Res., 79, 151-158. https://doi.org/10.1016/j.jcsr.2012.07.022.
- Hoveidae, N., Tremblay, R., Rafezy, B. and Davaran, A. (2015), "Numerical investigation of seismic behavior of short-core all-steel buckling restrained braces", J. Constr. Steel Res., 114, 89-99. https://doi.org/10.1016/j.jcsr.2015.06.005.
- Kachooee, A. and Kafi, M. A. (2018), "A Suggested method for improving post buckling behavior of concentric braces based on experimental and numerical studies", Struct., 14, 333-347. https://doi.org/10.1016/j.istruc.2018.04.003.
- Kachooee, A., Kafi, M.A. and Gerami, M. (2018), "The effect of local fuse on behavior of concentrically braced frame by a numerical study", Civil Eng. J., 4(3), 655. https://doi.org/10.28991/cej-0309123.
- Kafi, M.A. and Kachooee, A. (2018), "The behavior of concentric brace with bounded fuse", Mag. Civil Eng., 78(2), 16-29. https://doi.org/10.18720/MCE.78.2.
- Lee, K. and Bruneau, M. (2005), "Energy dissipation of compression members in concentrically braced frames: Review of experimental data", Struct. Eng., 131(4), 552-559. https://doi.org/https://doi.org/10.1061/(ASCE)0733-9445(2005)131:4(552).
- Legeron, F., Desjardins, E. and Ahmed, E. (2014), "Fuse performance on bracing of concentrically steel braced frames under cyclic loading", J. Constr. Steel Res., 95, 242-255. https://doi.org/10.1016/j.jcsr.2013.12.010.
- Miner, M.A. (1945), "Cumulative damage in fatigue", J. Appl. Mech., 12(3), A159-A164. https://doi.org/10.1115/1.4009458.
- Mirtaheri, M., Gheidi, A., Zandi, A.P., Alanjari, P. and Samani, H.R. (2011), "Experimental optimization studies on steel core lengths in buckling restrained braces", J. Constr. Steel Res., 67(8), 1244-1253. https://doi.org/10.1016/j.jcsr.2011.03.004.
- Mirtaheri, M., Sehat, S. and Nazeryan, M. (2018), "Improving the behavior of buckling restrained braces through obtaining optimum steel core length", Struct. Eng. Mech., 65(4), 401-408. https://doi.org/10.12989/sem.2018.65.4.401.
- Mortezagholi, M.H. and Zahrai, S.M. (2020), "Analytical and numerical studies on reducing lateral restraints in conventional & all steel buckling restrained braces", J. Build. Eng., 32, 101513. https://doi.org/10.1016/j.jobe.2020.101513.
- Nakamura, H. and Maeda Y,S.T. (2000), "Fatigue properties of practical scale unbonded braces", Nippon Steel Technical Report, Architectural Institute of Japan.
- Pan, P., Li, W., Nie, X., Deng, K. and Sun, J. (2017), "Seismic performance of a reinforced concrete frame equipped with a double-stage yield buckling restrained brace", Struct. Des. Tall Spec. Build., 26(4), 1-10. https://doi.org/10.1002/tal.1335.
- Razavi, S.A., Shemshadian, M.E., Mirghaderi, S.R. and Ahlehagh, S. (2011), "Seismic design of buckling restrained braced frames with reduced core length", The Structural Engineers World Congress, April.
- Razavi, S.A., Mirghaderi, S.R., Hosseini, A. and Shemshadian, M. E. (2012), "Reduced length buckling restrained brace using steel plates as restraining segment", Proceedings of the 15th World Conference on Earthquake Engineering, September.
- Razavi Tabatabaei, S.A., Mirghaderi, S.R. and Hosseini, A. (2014), "Experimental and numerical developing of reduced length buckling-restrained braces", Eng. Struct., 77, 143-160. https://doi.org/10.1016/j.engstruct.2014.07.034.
- Sabelli, R., Mahin, S. and Chang, C. (2003), "Seismic demands on steel braced frame buildings with buckling-restrained braces", Eng. Struct., 25(5), 655-666. https://doi.org/10.1016/S0141-0296(02)00175-X.
- Sahoo, D.R. and Chao, S.H. (2010), "Performance-based plastic design method for buckling-restrained braced frames", Eng. Struct., 32(9), 2950-2958. https://doi.org/10.1016/j.engstruct.2010.05.014.
- Shen, J., Seker, O., Akbas, B., Seker, P., Momenzadeh, S. and Faytarouni, M. (2017), "Seismic performance of concentrically braced frames with and without brace buckling", Eng. Struct., 141, 461-481. https://doi.org/10.1016/j.engstruct.2017.03.043.
- Shen, J., Seker, O., Sutchiewcharn, N. and Akbas, B. (2016), "Cyclic behavior of buckling-controlled braces", J. Constr. Steel Res., 121, 110-125. https://doi.org/10.1016/j.jcsr.2016.01.018.
- Simpson, B.G., Mahin, S.A. and Lai, J.W. (2017), "Experimental investigation of the behavior of vintage and retrofit concentrically braced steel frames under cyclic loading", Pacific Earthquake Engineering Research Center.
- Sun, J., Pan, P. and Wang, H. (2018), "Development and experimental validation of an assembled steel double-stage yield buckling restrained brace", J. Constr. Steel Res., 145, 330-340. https://doi.org/10.1016/j.jcsr.2018.03.003.
- Takeuchi, T., Hajjar, J.F., Matsui, R., Nishimoto, K. and Aiken, I.D. (2010), "Local buckling restraint condition for core plates in buckling restrained braces", J. Constr. Steel Res., 66(2), 139-149. https://doi.org/10.1016/j.jcsr.2009.09.002.
- Takeuchi, T., Ozaki, H., Matsui, R. and Sutcu, F. (2014), "Out-of-plane stability of buckling-restrained braces including moment transfer capacity", Earthq. Eng. Struct. Dyn., 43(6), 851-869. https://doi.org/10.1002/eqe.2376.
- Tremblay, O.E. and Dussault, R.V. (2012), "Finite element analysis of ductile fuses for W-shape steel bracing members", 15th World Conference on Earthquake Engineering (15WCEE).
- Tremblay, R. (2002), "Inelastic seismic response of steel bracing members", J. Constr. Steel Res., 58, 665-701. https://doi.org/10.1016/S0143-974X(01)00104-3.
- Trutalli, D., De Stefani, L., Marchi, L. and Scotta, R. (2019), "Seismic capacity of steel frames braced with cross-concentric rectangular plates: Non-linear analyses", J. Constr. Steel Res., 161, 128-136. https://doi.org/10.1016/j.jcsr.2019.07.003.
- Vosooq, A.K. and Zahrai, S.M. (2013), "Study of an innovative two-stage control system: Chevron knee bracing and shear panel in series connection", Struct. Eng. Mech., 47(6), 881-898. https://doi.org/10.12989/sem.2013.47.6.881.
- Wakabayashi, M., Nakamura, T., Katagihara, A., Yogoyama, H. and Morisono, T. (1973), "Experimental study on the elastoplastic behavior of braces enclosed by precast concrete panels under horizontal cyclic loading, Parts 1 & 2", Summaries of Technical Papers of Annual Meeting, 6, Architectural Institute of Japan.
- Ward, K.M., Fleischman, R.B. and Federico, G. (2012), "A cast modular bracing system for steel special concentrically braced frames", Eng. Struct., 45, 104-116. https://doi.org/10.1016/j.engstruct.2012.05.025.
- Xie, Q. (2005), "State of the art of buckling-restrained braces in Asia", J. Constr. Steel Res., 61(6), 727-748. https://doi.org/10.1016/j.jcsr.2004.11.005.