Acknowledgement
The research described in this paper was financially supported by the National Natural Science Foundation of China (Grant number: 51678190).
References
- ACI 318 (2019), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, USA.
- ASTM D638-14 (2014), Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, USA.
- ASTM D695-10 (2010), Standard Test Method for Compressive Properties of Rigid Plastics, ASTM International, West Conshohocken, USA.
- Beni, A., Minehiro, N. and Fumio, W. (2001a), "New approach for modeling confined concrete I: Circle columns", J. Struct. Eng., 127(7), 743-750. https://doi.org/10.1061/(asce)0733-9445(2001)127:7(743).
- Beni, A., Minehiro, N. and Fumio, W. (2001b), "New approach for modeling confined concrete II: Rectangular columns", J. Struct. Eng., 127(7), 751-757. https://doi.org/10.1061/(asce)0733-9445(2001)127:7(751).
- Candappa, D.C., Sanjayan, J.G. and Setunge, S. (2001), "Complete triaxial stress-strain curves of high-strength concrete", J. Mater. Civil Eng., 13(3), 209-215. https://doi.org/10.1061/(asce)0899-1561(2001)13:3(2 09).
- CEB-FIB Bulletin 66 (2010), Mode Code Final Draft-Volume 2, Federation Internationale du Beton, Lausanne, Switzerland.
- Chang, W. and Zheng, W.Z. (2019), "Estimation of compressive strength of stirrup-confined circular columns using artificial neural works", Struct. Concrete, 20, 1328-1339. https://doi.org/10.1002/suco.201800259.
- Cusson, D. and Paultre, P. (1994), "Stress-strain concrete columns confined by rectangular ties", J. Struct. Eng., 120(3), 783-804. https://doi.org/10.1061/(asce)0733-9445(1994)120:3(783)
- Dong, C.X., Kwan, A.K.H. and Ho, J.C.M. (2015a), "A constitutive model for predicting the lateral strain of confined concrete", Eng. Struct., 91, 155-166. https://doi.org/10.1016/j.engstruct.2015.02.014.
- Dong, C.X., Kwan, A.K.H. and Ho, J.C.M. (2015b), "Effects of confining stiffness and rupture strain on performance of FRP confined concrete", Eng. Struct., 97, 1-14. https://doi.org/10.1016/j.engstruct.2015. 03. 037.
- Dong, C.X., Kwan, A.K.H. and Ho, J.C.M. (2016), "Axial and lateral stress-strain model for concrete-filled steel tubes with FRP jackets", Eng. Struct., 126, 365-378. https://doi.org/10.1016/j.engstruct.2016.07.059.
- Eid, R., Kovler, K., David, I., Khoury, W. and Miller, S. (2018), "Behavior and design of high-strength circular reinforced concrete columns subjected to axial compression", Eng. Struct., 173, 472-480. https://doi.org/10.1016/j.engstruct.2018.06.116.
- GB50010-2010 (2011), Code for Design of Concrete Structures, China Architecture & Building Press, Beijing, China.
- Giuseppe, C. and Giovanni, M. (2010), "Compressive behavior of short high-strength concrete columns", Eng. Struct., 32(9), 2755-2766. https://doi.org/10.1016/j.engstruct.2010.04.045.
- Ho, J.C.M., Ou, X.L., Chen, X.T., Wang, Q. and Lai, M.H. (2020), "A path dependent constitutive model for CFFT column", Eng. Struct., 210, 110367. https://doi.org/10.1016/j.engstruct.2020.110367.
- Hou, C.C., Zheng, W.Z. and Chang, W. (2020b), "Behaviour of high-strength concrete circular columns confined by high-strength spirals under concentric compression", J. Civil Eng. Manage., 26(6), 564-578. https://doi.org/10.3846/jcem.2020.12913.
- Hou, C.C., Zheng, W.Z., Li, S. and Wu, X.H. (2020a), "Experimental investigation of full-scale concrete columns confined by high-strength transverse reinforcement subjected to lateral cyclic loading", Arch. Civil Mech. Eng., 20, 115. https://doi.org/10.1007/s43452-020-00126-x.
- Issa, M.A. and Tobaa, H. (1994), "Strength and ductility enhancement in high-strength confined concrete", Mag. Concrete Res., 45(168), 177-189. https://doi.org/10.1680/macr.1994.46.168.177.
- Kim, S.W., Kim, Y.S., Lee, J.Y. and Kim, K.H. (2017) "Confined concrete with varying yield strengths of spirals", Mag. Concrete Res., 69(5), 217-229. https://doi.org/10.1680/jmacr.16.00053.
- Kwan, A.K.H., Dong, C.X. and Ho, J.C.M. (2015), "Axial and lateral stress-strain model for FRP confined concrete", Eng. Struct., 99, 285-295. https://doi.org/10.1016/j.engstruct.2015.04.046.
- Kwan, A.K.H., Dong, C.X. and Ho, J.C.M. (2016), "Axial and lateral stress-strain model for circular concrete-filled steel tubes with external steel confinement", Eng. Struct., 117, 528-541. https://doi.org/10.1016/j.engstruct.2016.03.026.
- Lai, M.H., Hanzic, L. and Ho, J.C.M. (2018), "Fillers to improve passing ability of concrete", Struct. Concrete, 20, 1-13. https://doi.org/10.1002/suco.201800047.
- Lai, M.H., Liang, Y.W., Wang, Q., Ren, F.M., Chen, X.T. and Ho, J.C.M. (2020a), "A stress-path dependent stress-strain model for FRP-confined concrete", Eng. Struct., 203, 109824. https://doi.org/10.1016/j.engstruct.2020.109824.
- Lai, M.H., Song, W., Ou, X.L., Chen, X.T., Wang, Q. and Ho, J.C.M. (2020b), "A path dependent stree-strain model for concrete-filled-steel-tube column", Eng. Struct., 211, 110312. https://doi.org/10.1016/j.engstruct.2020.110312.
- Lee, J.M., Kim, Y.S., Kim, S.W., Park, J.H. and Kim, K.H. (2016), "Structural performance of rectangular section confined by squared spirals with no longitudinal bars influencing the confinement", Arch. Civil Mech. Eng., 16, 795-804. https://doi.org/10.1016/j.acme.2016.05.005.
- Li, Y.Z., Cao, S.Y. and Jing, D.H. (2018b), "Concrete columns reinforced with high-strength steel subjected to reversed cycle loading", ACI Struct. J., 115(4), 1037-1048. https://doi.org/10.14359/51701296.
- Li, Y.Z., Cao, S.Y., Liang, H., Ni, X.Y. and Jing, D.H. (2018a), "Axial compressive behavior of concrete columns with grade 600 MPa reinforcing bars", Eng. Struct., 172, 497-507. https://doi.org/10.1016/j.engstruct.2018.06.047.
- Lim, J.C. and Ozbakkaloglu, T. (2015), "Lateral strain-to-axial strain relationship of confined concrete", J. Struct. Eng., 141(5), 1-18. https://doi.org/10.1061/(asce)st.1943-541x.0001094.
- Mander, J.B. (1983), "Seismic design of bridge piers", Ph.D. Dissertation, University of Canterbury, Christchurch, New Zealand.
- Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1825. https://doi.org/10.1061/(asce)0733-445(1988)114:8(1804).
- Montoya, E., Vecchio, F.J. and Sheikh, S.A. (2001), "Compression field modeling of confined concrete", Struct. Eng. Mech., 12(3), 231-248. https://doi.org/10.12989/sem.2001.12.3.231.
- NZS3101 (2006), Concrete Structures Standard Part 1-The Design of Concrete Structures, Standard Association of New Zealand, Wellington, New Zealand.
- Paultre, P., Legeron, F. and Mongeau, D. (2001), "Influence of concrete strength and transverse reinforcement yield strength on behavior of high-strength concrete columns", ACI Struct. J., 98(4), 490-501. https://doi.org/10.14359/10292.
- Piscesa, B., Attard, M.M. and Samani, A.K. (2016), "A lateral strain plasticity model for FPR confined concrete", Compos. Struct., 158, 160-174. https://doi.org/10.1016/j.compstruct.2016.09.028.
- Razvi, S.R. and Saatcioglu, M. (1999), "Circular high-strength concrete columns under concentric compression", ACI Struct. J., 96(5), 817-825. https://doi.org/10.14359/736.
- Saatcioglu, M. and Razvi, S.R. (1998), "High-strength concrete columns with square sections under concentric compression", J. Struct. Eng., 124(12), 1438-1447. https://doi.org/10.1061/(asce)0733-9445(1998)124:12 (1438).
- Samani, A.K. and Attard, M.M. (2014), "Lateral strain model for concrete under compression", ACI Struct. J., 111(2), 441-461. https://doi.org/10.14359/51686532.
- Tasdemir, M.A., Tasdemir, C., Akyuz, S., Jefferson, A.D., Lydon, F.D. and Barr, B.I.G. (1998), "Evaluation of strains at peak stresses in concrete: A three-phase composite model approach", Cement Concrete Compos., 20(4), 301-318. https://doi.org/10.1016/s0958-9465(98)00012-2.
- Teng, J.G., Huang, Y.L., Lam, L. and Ye, L.P. (2006), "Theoretical model for fiber-reinforced polymer-confined concrete", J. Compos. Constr., 11(2), 201-210. https://doi.org/10.1061/(asce)1090-0268(2007)11:2 (201).
- Wang, W., Zhang, M., Tang, Y., Zhang, X. and Ding, X. (2017), "Behaviour of high-strength concrete columns confined by spiral reinforcement under uniaxial compression", Constr. Build. Mater., 154, 496-503. https://doi.org/10.1016/j.conbuildmat.2017.07.179.
- Xue, J., Zhao, X., Ke, X., Zhang, X., Zhang, F. and Zhang, P. (2020), "Experimental and numerical investigation of high-strength concrete encased steel columns with rectangular-spiral stirrups", J. Build. Eng., 32, 101518. https://doi.org/10.1016/j.jobe.2020.101518.