참고문헌
- Ali, A.F., Fattah, M.Y. and Ahmed, B.A. (2017), "Behavior of dry medium and loose sand-foundation system acted upon by impact loads", Struct. Eng. Mech., 64(6), 703-721. https://doi.org/10.12989/sem.2017.64.6.703.
- Ammunition and Explosive Magazine-TranSystems Corporation (2017).
- Ardila-Giraldo, O.A. and Pujol, S. (2019), "Failure mechanisms of small-scale reinforced concrete beams impacted by soft missiles", Struct., 20, 620-634. https://doi.org/10.1016/j.istruc.2019.06.009.
- AUTODYN Theory Manual (2005), Century Dynamics, Revision 4, Concord, CA, USA. http://www.oalib.com/references/8522641.
- Forrestal, M.J., Altman, B.S., Cargile, J.D. and Hanchak, S.J. (1994), "An empirical equation for penetration depth of ogive-nose projectiles into concrete targets", Int. J. Impact Eng., 15(4), 395-405. https://doi.org/10.1016/0734-743X(94)80024-4.
- Forrestal, M.J., Frew, D.J., Hanchak, S.J. and Brar, N.S. (1996), "Penetration of grout and concrete targets with ogive-nose steel projectiles", Int. J. Impact Eng., 18(5), 465-476. https://doi.org/10.1016/0734-743X(95)00048-F.
- Gong, S., Lu, Y., Tu, Z. and Jin, W. (2009), "Validation study on numerical simulation of RC response to close-in blast with a fully coupled model", Struct. Eng. Mech., 32(2), 283-300. http://doi.org/10.12989/sem.2009.32.2.283.
- Heckotter, C., Sievers, J., Tarallo, F., Bourasseau, N., Ciree, B., Saarenheimo, A., ... & Tuomala, M. (2010), "Comparative analyses of impact tests with reinforced concrete slabs", Towards Convergence of Technical Nuclear Safety Practices in Europe.
- International Ammunition Technical Guideline (2021), Ammunition Accidents and Incidents: Unit Reporting and Technical Investigation Methodology, New York.
- Kennedy, R.P. (1976), "A review of procedures for the analysis and design of concrete structures to resist missile impact effect", Nucl. Eng. Des., 37(2), 183-203. https://doi.org/10.1016/0029-5493(76)90015-7.
- Kojima, I. (1991), "An experimental study on local behavior of reinforced concrete slabs to missile impact", Nucl. Eng. Des., 130, 121-132. https://doi.org/10.1016/0029-5493(91)90121-W.
- Koli, S., Chellapandi, P., Rao, L.B. and Sawant, A. (2020), "Study on JWL equation of state for the numerical simulation of near-field and far-field effects in underwater explosion scenario", Eng. Sci. Technol., 23(4), 758-768. https://doi.org/10.1016/j.jestch.2020.01.007.
- Krauthammer, T. (2008), Modern Protective Structures, 1st Edition, CRC Press.
- Lee, E., Finger, M. and Collins, W. (1973), "JWL equation of state coefficients for high explosives (No. UCID-16189)", Lawrence Livermore National Lab.(LLNL), Livermore, CA, USA.
- Li, Q.M. and Chen, X.W. (2003), "Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile", Int. J. Impact Eng., 28(1), 93-116. https://doi.org/10.1016/S0734-743X(02)00037-4.
- Li, Q.M., Reid, S.R., Wen, H.M. and Telford, A.R. (2005), "Local impact effects of hard missiles on concrete targets", Int. J. Impact Eng., 32(1-4), 224-284. https://doi.org/10.1016/j.ijimpeng.2005.04.005.
- Mazek, S.A. (2014), "Performance of sandwich structure strengthened by pyramid cover under blast effect", Struct. Eng. Mech., 50(4), 471-486. http://doi.org/10.12989/sem.2014.50.4.471.
- Pandey, A.K. (2002), "Damage prediction of RC containment shell under impact and blast loading", Struct. Eng. Mech., 36(6), 729-744. http://doi.org/10.12989/sem.2010.36.6.729.
- Prem, P.R., Verma, M., Murthy, A.R., Rajasankar, J. and Bharatkumar, B. (2017), "Numerical and theoretical modelling of low velocity impact on UHPC panels", Struct. Eng. Mech., 63(2), 207-215. https://doi.org/10.12989/sem.2017.63.2.207.
- Riedel, W., Kawai, N. and Kondo, K.I. (2009), "Numerical assessment for impact strength measurements in concrete materials", Int. J. Impact Eng., 36(2), 283-293. https://doi.org/10.1016/j.ijimpeng.2007.12.012.
- Rogers, G.F.C. and Mayhew, Y.R. (1995), Thermodynamic and Transport Properties of Fluids-SI Units, 5th Edition, Wiley-Blackwell.
- Siddiqui, N.A. and Abbas, H. (2002), "Mechanics of missile penetration into geo-materials", Struct. Eng. Mech., 13(6), 639-652. http://doi.org/10.12989/sem.2002.13.6.639.
- Sokolovsky, A., Gueraud, R., Dulac, J. and Labrot, R. (1977), "Local behavior of reinforced concrete walls under missile impact (No. CEA-CONF--4062)", CEA Centre d'Etudes Nucleaires de Saclay.
- Thai, D.K. and Kim, S.E. (2015), "Numerical simulation of reinforced concrete slabs under missile impact", Struct. Eng. Mech., 53(3), 455-479. http://doi.org/10.12989/sem.2015.53.3.455.
- TM 5-1300 (1990), Structures to Resist the Effects of Accidental Explosions.
- TM-5-855-1 (1986), Design and Analysis of Hardened Structure to Conventional Weapons Effect.
- UFC 3-340-02 (1943), Structures to Resist the Effects of the Accidental Explosions, Unified Facil Criteria 2008.
- Ullah, H.B.R. (2017), "Dynamic numerical simulation of plastic deformation and residual stress in shot peening of aluminum alloy", Struct. Eng. Mech., 63, 1-9. https://doi.org/10.12989/sem.2017.63.1.001.
- Yankelevsky, D.Z. (1997), "Local response of concrete slabs to low velocity missile impact", Int J Impact Eng., 19, 331-343. https://doi.org/10.1016/S0734-743X(96)00041-3.
- Yu, X., Chen, L., Fang, Q., Hou, X. and Fan, Y. (2018), "Blast mitigation effect of the layered concrete structure with an air gap: A numerical approach", Int. J. Protec. Struct., 9(4), 432-460. https://doi.org/10.1177/2041419618766951.