참고문헌
- Abdul-Salam, B., Farghaly, A.S. and Benmokrane, B. (2016), "Mechanisms of shear resistance of one-way concrete slabs reinforced with FRP bars", Constr. Build. Mater., 127, 959-970. https://doi.org/10.1016/j.conbuildmat.2016.10.015.
- ACI 440.1R-15 (ACI committee 440) (2015), Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars, American Concrete Institute.
- Alam, M.S. and Hussein, A. (2011), "Experimental investigation on the effect of longitudinal reinforcement on shear strength of fibre reinforced polymer reinforced concrete beams", Can. J. Civil Eng., 38(3), 243-251. https://doi.org/10.1139/L10-126.
- Alam, M.S. and Hussein, A. (2012), "Effect of member depth on shear strength of high-strength fiber-reinforced polymer-reinforced concrete beams", J. Compos. Constr., 16(2), 119-126. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000248.
- Alam, M.S. and Hussein, A. (2013), "Size effect on shear strength of FRP reinforced concrete beams without stirrups", J. Compos. Constr., 17(4), 507-516. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000346.
- Alam, M.S. and Hussein, A. (2017), "Relationship between the shear capacity and the flexural cracking load of FRP reinforced concrete beams", Constr. Build. Mater., 154, 819-828. https://doi.org/10.1016/j.conbuildmat.2017.08.006.
- Alkhrdaji, T., Wideman, M., Belarbi, A. and Nanni, A. (2001), "Shear strength of GFRP RC beams and slabs. In Proceedings of the international conference", Composites in Construction-CCC, October.
- Alkroosh, I., Alzabeebee, S. and Al-Taie, A.J. (2020), "Evaluation of the accuracy of commonly used empirical correlations in predicting the compression index of Iraqi fine-grained soils", Innov. Infrastr. Solut., 5(3), 1-10. https://doi.org/10.1007/s41062-020-00321-y.
- Almustafa, M.K. and Nehdi, M.L. (2022), "Machine learning model for predicting structural response of RC columns subjected to blast loading", Int. J. Impact Eng., 162, 104145. https://doi.org/10.1016/j.ijimpeng.2021.104145.
- Alzabeebee, S. (2020), "Dynamic response and design of a skirted strip foundation subjected to vertical vibration", Geomech. Eng., 20(4), 345-358. https://doi.org/10.12989/gae.2020.20.4.345.
- Alzabeebee, S. and Chapman, D.N. (2020), "Evolutionary computing to determine the skin friction capacity of piles embedded in clay and evaluation of the available analytical methods", Transp. Geotech., 24, 100372. https://doi.org/10.1016/j.trgeo.2020.100372.
- Alzabeebee, S. (2022a), "Application of EPR-MOGA in computing the liquefaction-induced settlement of a building subjected to seismic shake", Eng. Comput., 38, 437-448. https://doi.org/10.1007/s00366-020-01159-9.
- Alzabeebee, S. (2022b), "Explicit soft computing model to predict the undrained bearing capacity of footing resting on aggregate pier reinforced cohesive ground", Innov. Infrastr. Solut., 7, 105. https://doi.org/10.1007/s41062-021-00706-7.
- Alzabeebee, S., Alshkane, Y.M., Al-Taie, A.J. and Rashed, K.A. (2021a), "Soft computing of the recompression index of fine-grained soils", Soft Comput., 25, 15297-15312. https://doi.org/10.1007/s00500-021-06123-3.
- Alzabeebee, S., Mohamad, S.A. and Al-Hamd, R.K.S. (2021b), "Surrogate models to predict maximum dry unit weight, optimum moisture content and California bearing ratio form grain size distribution curve", Road Mater. Pave. Des., 1-18. https://doi.org/10.1080/14680629.2021.1995471.
- Alzabeebee, S., Chapman, D. and Faramarzi, A. (2018), "Development of a novel model to estimate bedding factors to ensure the economic and robust design of rigid pipes under soil loads", Tunn. Undergr. Sp. Technol., 71, 567-578. https://doi.org/10.1016/j.tust.2017.11.009.
- Ashour, A.F. (2006), "Flexural and shear capacities of concrete beams reinforced with GFRP bars", Constr. Build. Mater., 20(10), 1005-1015. https://doi.org/10.1016/j.conbuildmat.2005.06.023.
- Asteris, P.G., Lemonis, M.E., Nguyen, T.A., Van Le, H., Pham, B.T. and Structures, C. (2021), "Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes", Steel Compos. Struct., 39(4), 471-491. https://doi.org/10.12989/scs.2021.39.4.471.
- Babaei, K. and Hawkins, N.M. (1988), "Evaluation of bridge deck protective strategies", Concete Int., 10(12), 56-66.
- Bentz, E.C., Massam, L. and Collins, M.P. (2010), "Shear strength of large concrete members with FRP reinforcement", J. Compos. Constr., 14(6), 637-646. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000108.
- CAN/CSA S6-10 Addendum (Canadian Standard Association) (2010), Canadian Highway Bridge Design Code, Canadian Standard Association.
- Collins, M.P. and Kuchma, D. (1999), "How safe are our large, lightly reinforced concrete beams, slabs, and footings?", ACI Struct. J., 96(4), 482-490.
- CSA S806-12 (2012), Design and Construction of Building structures with Fibre-Reinforced Polymer, Canadian Standards Association.
- Dhahir, M.K. and Nadir, W. (2018), "A compression field based model to assess the shear strength of concrete beams reinforced with longitudinal FRP bars", Constr. Build. Mater., 191, 736-751. https://doi.org/10.1016/j.cscm.2018.e00210.
- El-Salakawy, E., Benmokrane, B. and Desgagne, G. (2003), "Fibre-reinforced polymer composite bars for the concrete deck slab of Wotton Bridge", Can. J. Civil Eng., 30(5), 861-870. https://doi.org/10.1139/l03-055.
- El-Sayed, A., El-Salakawy, E. and Benmokrane, B. (2005), "Shear strength of one-way concrete slabs reinforced with fiber-reinforced polymer composite bars", J. Compos. Constr., 9(2), 147-157. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:2(147).
- El-Sayed, A.K., El-Salakawy, E.F. and Benmokrane, B. (2006a), "Shear capacity of high-strength concrete beams reinforced with FRP bars", ACI Struct. J., 103(3), 383-389.
- El-Sayed, A.K., El-Salakawy, E.F. and Benmokrane, B. (2006b), "Shear strength of FRP-reinforced concrete beams without transverse reinforcement", ACI Struct. J., 103(2), 235-243.
- Giustolisi, O. and Savic, D.A. (2006), "A symbolic data-driven technique based on evolutionary polynomial regression", J. Hydroinform, 8(3), 207-222. http://dx.doi.org/10.2166/hydro.2006.020.
- Giustolisi, O. and Savic, D.A. (2009), "Advances in data-driveanalyses and modelling using EPR-MOGA", J. Hydroinform., 11(3-4), 225-236. https://doi.org/10.2166/hydro.2009.017.
- Golafshani, E.M. and Ashour, A. (2016), "A feasibility study of BBP for predicting shear capacity of FRP reinforced concrete beams without stirrups", Adv. Eng. Softw., 97, 29-39. http://doi.org/10.1016/j.advengsoft.2016.02.007.
- Han, B., Sun, J.B., Heidarzadeh, M., Jam, M.M. and Benjeddou, O. (2021), "Three dimensional dynamic soil interaction analysis in time domain through the soft computing", Steel Compos. Struct., 41(5), 761-773. https://doi.org/10.12989/scs.2021.41.5.761.
- Hoult, N.A., Sherwood, E.G., Bentz, E.C. and Collins, M.P. (2008), "Does the use of FRP reinforcement change the one-way shear behavior of reinforced concrete slabs?", J. Compos. Constr., 12(2), 125-133. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:2(125).
- JSCE-97 (Japanies Sociaty of Civil Engineers) (1997), Recommendation for Design and Construction of Concrete Structures using Continuous Fiber Reinforcing Materials, Concrete Engineering Series.
- Jumaa, G.B. and Yousif, A.R. (2018), "Predicting shear capacity of FRP-reinforced concrete beams without stirrups by artificial neural networks, gene expression programming, and regression analysis", Adv. Civil Eng., 5157824. https://doi.org/10.1155/2018/5157824.
- Kani, G.N. (1967), "how safe are our large reinforced concrete beams?", ACI J. Proc., 64(3), 128-141.
- Kara, I.F. (2011), "Prediction of shear strength of FRP-reinforced concrete beams without stirrups based on genetic programming", Adv. Eng. Softw., 42(6), 295-304. https://doi.org/10.1016/j.advengsoft.2011.02.002.
- Kaszubska, M., Kotynia, R. and Barros, J.A. (2017), "Influence of longitudinal GFRP reinforcement ratio on shear capacity of concrete beams without stirrups", Proc. Eng., 193, 361-368. https://doi.org/10.1016/j.proeng.2017.06.225.
- Kim, C.H. and Jang, H.S. (2014), "Concrete shear strength of normal and lightweight concrete beams reinforced with FRP bars", J. Compos. Constr., 18(2), 04013038. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000440.
- Kim, J.K. and Park, Y.D. (1994) "Shear strength of reinforced high strength concrete beams without web reinforcement", Mag. Concrete Res., 46(166), 7-16. https://doi.org/10.1680/macr.1994.46.166.7.
- Mari, A., Cladera, A., Oller, E. and Bairan, J. (2014), "Shear design of FRP reinforced concrete beams without transverse reinforcement", Compos. Part B: Eng., 57, 228-241. https://doi.org/10.1016/j.compositesb.2013.10.005.
- Matta, F., El-Sayed, A.K., Nanni, A. and Benmokrane, B. (2013), "Size effect on concrete shear strength in beams reinforced with fiber-reinforced polymer bars", ACI Struct. J., 110(4), 617-628.
- Matta, F., Nanni, A., Hernandez, T.M. and Benmokrane, B. (2008), "Scaling of strength of FRP reinforced concrete beams without shear reinforcement", 4th International Conference on FRP Composites in Civil Engineering (CICE2008), Zurich, Switzerland.
- Mohammadzadeh S,D., Kazemi, S.F., Mosavi, A., Nasseralshariati, E. and Tah, J.H. (2019), "Prediction of compression index of fine-grained soils using a gene expression programming model", Infrastruct., 4(2), 26. https://doi.org/10.3390/infrastructures4020026.
- Naderpour, H., Poursaeidi, O. and Ahmadi, M. (2018), "Shear resistance prediction of concrete beams reinforced by FRP bars using artificial neural networks", Measure., 126, 299-308. https://doi.org/10.1016/j.measurement.2018.05.051.
- Razaqpur, A.G., Isgor, B.O., Greenaway, S. and Selley, A. (2004), "Concrete contribution to the shear resistance of fiber reinforced polymer reinforced concrete members", J. Compos. Constr., 8(5), 452-460. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:5(452).
- Zuhaira, A.A., Al-Hamd, R.K S., Alzabeebee, S. and Cunningham, L.S. (2021), "Numerical investigation of skimming flow characteristics over non-uniform gabion-stepped spillways", Innov. Infrastr. Solut., 6, 225. https://doi.org/10.1007/s41062-021-00579-w.
- Stanik, B.A. (1998), "The influence of concrete strength, distribution of longitudinal reinforcement, amount of transverse reinforcement and member size on shear strength of reinforced concrete members", MSc Thesis, University of Toronto, Canada.
- Steiner, S., El-Sayed, A.K. and Benmokrane, B. (2008), "Shear behaviour of large-size beams reinforced with glass FRP bars", Proceedings Annual Conference-Canadian Society for Civil Engineering, 1397-1406.
- Tureyen, A.K. and Frosch, R.J. (2002), "Shear tests of FRP-reinforced concrete beams without stirrups", ACI Struct. J., 99(4), 427-434.
- Yost, J.R., Gross, S.P. and Dinehart, D.W. (2001), "Shear strength of normal strength concrete beams reinforced with deformed GFRP bars", J. Compos. Constr., 5(4), 268-275. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:4(268).