DOI QR코드

DOI QR Code

Shear strengthening of reinforced concrete beams with minimum CFRP and GFRP strips using different wrapping technics without anchoring application

  • Aksoylu, Ceyhun (Department of Civil Engineering, Konya Technical University)
  • Received : 2022.07.07
  • Accepted : 2022.09.20
  • Published : 2022.09.25

Abstract

In this study, the performance of shear deficient reinforced concrete (RC) beams with rectangular cross-sections, which were externally bonded reinforced (EBR) with high strength CFRP and GFRP strips composite along shear spans, has been experimentally and analytically investigated under vertical load. In the study, the minimum CFRP and GFRP strips width over spacing were considered. The shear beam with turned end to a bending beam was investigated by applying different composite strips. Therefore various arising in each of strength, ductility, rigidity, and energy dissipation capacity were obtained. A total of 12 small-scaled experimental programs have been performed. Beam dimensions have been taken as 100×150×1000 mm. Four beams have been tested as unstrengthened samples. This paper focuses on the effect of minimum CFRP and GFRP strip width on behaviours of RC beams shear-strengthened with full-wrapping, U-wrapping, and U-wrapping+longitudinal bonding strips. Strengthened beams showed significant increments for flexural ductility, energy dissipation, and inelastic performance. The full wrapping strips applied against shear failure have increased the load-carrying capacity of samples 53%-63% interval rate. Although full wrapping is the best strengthening choice, the U-wrapping and U-wrapping+longitudinal strips of both CFRP and GFRP bonding increased the shear capacity by 53%~75% compared to the S2 sample. In terms of ductility, the best result has been obtained by the type of strengthening where the S5 beam was completely GFRP wrapped. The experimental results were also compared with the analytically given by ACI440.2R-17, TBEC-2019 and FIB-2001. Especially in U-wrapped beams, the estimation of FIB was determined to be 81%. The estimates of the other codes are far from meeting the experimental results; therefore, essential improvements should be applied to the codes, especially regarding CFRP and GFRP deformation and approaches for longitudinal strip connections. According to the test results, it is suggested that GFRP, which is at least as effective but cheaper than CFRP, may be preferred for strengthening applications.

Keywords

Acknowledgement

Author is grateful to the owners and workers of the company "Gensa Teknik Kimya Sanayi Ticaret A.S" for the supply of carbon and glass fabrics.

References

  1. ACI-440.2R-17 (2017), Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures, American Concrete Institute, Farmington Hills, MI.
  2. Adhikary, B.B. and Mutsuyoshi, H. (2004), "Behavior of concrete beams strengthened in shear with carbon-fiber sheets", J. Compos. Construct.. 8(3), 258-264, https://doi.org/10.1061/(ASCE)1090 0268(2004)8:3(258).
  3. Dar, M.A., Subramanian, N., Dar, A.R., Rather, A.I., Mir, A. and Syed, S. (2019), "Strengthening of capacity deficient RC beams-An experimental approach", Struct. Eng. Mech., 70(3), 303-310. http://dx.doi.org/10.12989/sem.2019.70.3.303.
  4. Aksoylu, C., Ozkilic, Y.O. and Arslan, M.H (2022), "Mechanical steel stitches: An innovative approach for strengthening shear deficiency in undamaged reinforced concrete beams", Buildings, In press.
  5. Aksoylu, C. (2021), "Experimental analysis of shear deficient reinforced concrete beams strengthened by glass fiber strip composites and mechanical stitches". Steel Compos. Struct., 40(2), 267-285.
  6. Aksoylu, C., Yazman, S., Ozkilic, Y.O., Gemi, L. and Arslan, M.H. (2020a), "Experimental analysis of reinforced concrete shear deficient beams with circular web openings strengthened by CFRP composite", Compos. Struct., 249, 112561, https://doi.org/10.1016/j.compstruct.2020.112561.
  7. Aksoylu, C., Ozkilic, Y.O. and Arslan, M.H. (2020b), "Damages on prefabricated concrete dapped-end purlins due to snow loads and a novel reinforcement detail", Eng. Struct., 225, 111225. https://doi.org/10.1016/j.engstruct.2020.111225.
  8. Aksoylu, C., Ozkilic, Y.O., Yazman, S., Gemi, L. and Arslan, M.H. (2021), "Experimental and numerical investigation of load bearing capacity of thinned end precast purlin beams and solution proposals", Teknik Dergi. 32(3). https://doi.org/10.18400/tekderg.667066.
  9. Al-Mahaidi, R. and Kalfat, R. (2018), Rehabilitation of Concrete Structures with Fiber-Reinforced Polymer, Butterworth-Heinemann, India.
  10. Al-Salloum, Y.A., Elsanadedy, H.M., Alsayed, S.H. and Iqbal, R.A. (2012), "Experimental and Numerical Study for the Shear Strengthening of Reinforced Concrete Beams Using TextileReinforced Mortar", J. Compos. Construct., 16(1), 74-90, https://doi.org/10.1061/(ASCE)CC.1943-5614.0000239.
  11. Alsdudi, M., Arslan, M.H., Ozkilic, Y.O., Yazman, S., Aksoylu, C. and Gemi, L. (2020), Determination of Optimum CFRP composite Amount in Strengthening Reinforced Concrete Beams with Inadequate Shear Strength, Faculty of Engineering, University of Porto, Portugal.
  12. ASTM/D3039 (2008), Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials", ASTM 3039 2008.
  13. Altin, S., Anil, O., Toptas, T. and Kara, M.E. (2011), "Retrofitting of shear damaged RC beams using CFRP strips", Steel Compos. Struct., 11(3), 207-223. http://dx.doi.org/10.12989/scs.2011.11.3.207.
  14. AL-Shalif, S.A., Akin, A., Aksoylu, C. and Arslan, M.H. (2022), "Strengthening of shear-critical reinforced concrete T-beams with anchored and non-anchored GFRP fabrics applications", Structures, 44, 809-827. https://doi.org/10.1016/j.istruc.2022.08.044.
  15. Alhaddad, M.S., Siddiqui, N.A., Abadel, A.A., Alsayed, S.H. and Al-Salloum, Y.A. (2012), "Numerical investigations on the seismic behavior of FRP and TRM upgraded RC exterior beamcolumn joints", J. Compos. Construct., 16(3), 308-321. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000265.
  16. Anil, O. and Yilmaz, T. (2015), "Low velocity impact behavior of shear deficient RC beam strengthened with CFRP strips", Steel Compos. Struct., 19(2), 417-439. https://doi.org/10.12989/scs.2015.19.2.417
  17. Ary, M.I. and Kang, T.H.K. (2012), "Shear-strengthening of reinforced & prestressed concrete beams using FRP: Part I - Review of previous research", Int. J. Concrete Struct. Mater., 6(1), 41-47, https://doi.org/10.1007/s40069-012-0004-1.
  18. Arslan, M.H., Yazman, S., Hamad, A.A., Aksoylu, C., Ozkilic, Y. O. and Gemi, L. (2022), "Shear strengthening of reinforced concrete T-beams with anchored and non-anchored CFRP fabrics", Structures, 39, 527-542. https://doi.org/10.1016/j.istruc.2022.03.046
  19. Attari, N., Amziane, S. and Chemrouk, M. (2012), "Flexural strengthening of concrete beams using CFRP, GFRP and hybrid FRP sheets", Construct. Build. Mater., 37, 746-757, https://doi.org/10.1016/j.conbuildmat.2012.07.052.
  20. Aykac, S. and Yilmaz, M. (2011), " Behaviour and Strength of RC beams with regular triangular or circular web openings", J. Faculty Eng. Architect. Gazi Univ., 26(3), 711-718.
  21. Baggio, D., Soudki, K. and Noel, M. (2014), "Strengthening of shear critical RC beams with various FRP systems", Construct. Build. Mater., 66, 634-644. https://doi.org/10.1016/j.conbuildmat.2014.05.097.
  22. Banjara, N.K. and Ramanjaneyulu, K. (2019), "Investigations on behaviour of flexural deficient and CFRP strengthened reinforced concrete beams under static and fatigue loading", Construct. Build. Mater., 201, 746-762, https://doi.org/10.1016/j.conbuildmat.2019.01.010.
  23. Belabed, Y., Kerboua, B. and Tarfaoui, M. (2019), "New Optimized Numerical Solution of Interfacial Stresses in Steel Strengthened Structures with CFRP", Adv. Civil Eng. Mater., 8(1), 117-133, https://doi.org/10.1520/ACEM20180061.
  24. Benmokrane, B., Elgabbas, F., Ahmed, E.A. and Cousin, P. (2015), "Characterization and Comparative Durability Study of Glass/Vinylester, Basalt/Vinylester, and Basalt/Epoxy FRP Bars", J. Compos. Construct., 19(6), 04015008. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000564.
  25. Bove, M., Castellano, A., Fraddosio, A., Scacco, J., Milani, G. and Piccioni, M.D. (2019), "Experimental and numerical analysis of FRCM strengthened parabolic tuff barrel vault", In Key Engineering Materials, 817, 213-220). Trans Tech Publications Ltd.https://doi.org/10.4028/www.scientific.net/KEM.817.213.
  26. Buchan, P.A. and Chen, J.F. (2007), "Blast resistance of FRP composites and polymer strengthened concrete and masonry structures - A state-of-the-art review", Compos. Part B: Eng., 38(5), 509-522. https://doi.org/10.1016/j.compositesb.2006.07.009.
  27. Camata, G., Spacone, E. and Zarnic, R. (2007), "Experimental and nonlinear finite element studies of RC beams strengthened with FRP plates", Compos. Part B: Eng., 38(2), 277-288. https://doi.org/10.1016/j.compositesb.2005.12.003.
  28. Carolin, A. (2003), Carbon Fibre Reinforced Polymers for Strengthening of Structural Elements, Lulea tekniska Universitet, Ph.D. Dissertation, Sweden.
  29. Carolin, A. and Taljsten, B. (2005), "Theoretical study of srengthening for increased shear bearing capacity", J. Compos. Construct., 9(6), 497-506, https://doi.org/10.1061/(ASCE)1090-0268(2005)9:6(497).
  30. Cao, S.Y., Chen, J.F., Teng, J.G., Hao, Z. and Chen, J. (2005), "Debonding in RC beams shear strengthened with complete FRP wraps", J. Compos. Construct., 9(5), 417-428. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:5(417).
  31. Cao, Q., Zhou, J., Wu, Z. and Ma, Z.J. (2019), "Flexural behavior of prestressed CFRP reinforced concrete beams by two different tensioning methods", Engineering Structures. 189 411-422, https://doi.org/10.1016/j.engstruct.2019.03.051.
  32. Castellano, A., Fraddosio, A., Scacco, J., Milani, G. and Piccioni, M.D. (2019), "Dynamic response of FRCM reinforced masonry arches", In Key Engineering Materials, 817, 285-292. https://doi.org/10.4028/www.scientific.net/KEM.817.285.
  33. Chalioris, C.E., Kytinou, V. K., Voutetaki, M.E. and Papadopoulos, N.A. (2019), "Repair of heavily damaged RC beams failing in shear using U-shaped mortar jackets", Buildings, 9(6), 146. https://doi.org/10.3390/buildings9060146.
  34. Chalioris, C.E., Zapris, A.G. and Karayannis, C.G. (2020), "Ujacketing applications of fiber-reinforced polymers in reinforced concrete T-beams against shear-Tests and design", Fibers, 8(2), 13. https://doi.org/10.3390/fib8020013.
  35. Chen, J.F. and Teng, J.G. (2003), "Shear capacity of FRPstrengthened RC beams: FRP debonding", Construct. Build. Mater., 17(1), 27-41. https://doi.org/10.1016/S0950-0618(02)00091-0.
  36. Chen, G.M., Li, S.W., Fernando, D., Liu, P.C. and Chen, J.F. (2017), "Full-range FRP failure behaviour in RC beams shearstrengthened with FRP wraps", International Journal of Solids and Structures. 125, 1-21. https://doi.org/10.1016/j.ijsolstr.2017.07.019.
  37. Chen, G.M., Zhang, Z., Li, Y.L., Li, X.Q. and Zhou, C.Y. (2016), "T-section RC beams shear-strengthened with anchored CFRP U-strips", Compos. Struct., 144, 57-79. https://doi.org/10.1016/j.compstruct.2016.02.033.
  38. Cheng, R.J.J., Hutchinson, R. and Rizkalla, S. (1997), "Rehabilitation of concrete bridges for shear deficiency using CFRP sheets", 42nd International SAMPE Symposium, 325-335.
  39. Dong, J., Wang, Q. and Guan, Z. (2013), "Structural behaviour of RC beams with external flexural and flexural-shear strengthening by FRP sheets", Compos. Part B: Eng., 44(1), 604-612. https://doi.org/10.1016/j.compositesb.2012.02.018.
  40. D'Antino, T. and Triantafillou, T.C. (2016), "Accuracy of design-oriented formulations for evaluating the flexural and shear capacities of FRP-strengthened RC beams", Struct. Concrete. 17(3), 425-442. https://doi.org/10.1002/suco.201500066.
  41. El-Saikaly, G., Godat, A. and Chaallal, O. (2015), "New anchorage technique for FRP shear-strengthened RC T-beams using CFRP rope", J. Compos. Construct., 19(4), 04014064. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000530.
  42. Elsanadedy, H.M., Al-Salloum, Y.A., Almusallam, T.H., Alshenawy, A.O. and Abbas, H. (2019), "Experimental and numerical study on FRP-upgraded RC beams with large rectangular web openings in shear zones", Construction and Building Materials. 194 322-343, https://doi.org/10.1016/j.conbuildmat.2018.10.238.
  43. El-Shihy, A., Fawzy, H., Mustafa, S., El-Zohairy, A.J.S. and Structures, C. (2010), "Experimental and numerical analysis of composite beams strengthened by CFRP laminates in hogging moment region", Steel Compos. Struct., 10(3), 281-295, http://dx.doi.org/10.12989/scs.2010.10.3.281.
  44. Etman, E.E. and Khalil, A. (2003), "Effect of corner radius on the behavior of strengthened RC columns with different heights", AICSGES, Fifth Alexandria International Conference on Structural and Geotechnical Engineering, Alexandria, Egypt, DEC., RC.
  45. Fib Bulletin (2001), "Reinforcement for RC structures", FRP Externally bonded Fib Bull,. 14, 51-58.
  46. Fib (2001), Externally Bonded FRP Reinforcement for RC Structures, Technical Report, Federation for Structural Concrete.
  47. Gemi, L., Alsdudi, M., Aksoylu, C., Yazman, S., Ozkilic, Y.O. and Arslan, M.H. (2022a), "Optimum amount of CFRP for strengthening shear deficient reinforced concrete beams", Steel Compos. Struct., 43(6), 735-757.
  48. Gemi, L., Madenci, E., Ozkilic, Y.O., Yazman, S. and Safonov, A. (2022b), "Effect of fiber wrapping on bending behavior of reinforced concrete filled pultruded GFRP composite hybrid beams", Polymers, 14(18), 3740. https://doi.org/10.3390/polym14183740
  49. Gemi, L., Aksoylu, C., Yazman, S., Ozkilic, Y.O. and Arslan, M.H. (2019), "Experimental investigation of shear capacity and damage analysis of thinned end prefabricated concrete purlins strengthened by CFRP composite", Compos. Struct., 229, 111399. https://doi.org/10.1016/j.compstruct.2019.111399.
  50. Gemi, L., Madenci, E. and Ozkilic, Y.O. (2020), "Celik, Cam FRP ve Hibrit Donatili Betonarme Kirislerin Egilme Performansinin Incelenmesi", Duzce universitesi Bilim ve Teknoloji Dergisi. 8(2), 1470-1483. https://doi.org/10.29130/dubited.629354.
  51. Gemi, L., Madenci, E. and Ozkilic, Y.O. (2021), "Experimental, analytical and numerical investigation of pultruded GFRP composite beams infilled with hybrid FRP reinforced concrete", Eng. Struct., 244, 112790. https://doi.org/10.1016/j.engstruct.2021.112790
  52. Golias, E., Zapris, A.G., Kytinou, V.K., Kalogeropoulos, G.I., Chalioris, C.E. and Karayannis, C.G. (2021), " Effectiveness of the novel rehabilitation method of seismically damaged RC joints using C-FRP ropes and comparison with widely applied method using C-FRP sheets-Experimental investigation", Sustainability, 13(11), 6454. https://doi.org/10.3390/su13116454.
  53. Golias, E., Zapris, A.G., Kytinou, V.K., Osman, M., Koumtzis, M., Siapera, D. and Karayannis, C.G. (2021), "Application of Xshaped CFRP ropes for structural upgrading of reinforced concrete beam-column joints under cyclic loading-experimental study", Fibers, 9(7), 42. https://doi.org/10.3390/fib9070042.
  54. Guadagnini, M., Pilakoutas, K. and Waldron, P. (2006), "Shear resistance of FRP RC beams: Experimental study", J. Compos. Construct., 10(6), 464-473. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:6(464).
  55. Hasan, M.A., Akiyama, M., Kashiwagi, K., Kojima, K. and Peng, L. (2020), "Flexural behaviour of reinforced concrete beams repaired using a hybrid scheme with stainless steel rebars and CFRP sheets", Construct. Build. Mater., 265, 120296. https://doi.org/10.1016/j.conbuildmat.2020.120296.
  56. Huang, L., Zhao, L. and Yan, L. (2018), "Flexural performance of RC beams strengthened with polyester FRP composites", Int. J. Civil Eng., 16, 715-724. https://doi.org/10.1007/s40999-016-0140-0.
  57. Huo, J., Li, Z., Zhao, L., Liu, J. and Xiao, Y. (2018), "Dynamic Behavior of Carbon Fiber-Reinforced Polymer-Strengthened Reinforced Concrete Beams without Stirrups under Impact Loading", ACI Structural Journal. 115(3), 10.14359/51701283.
  58. Kachlakev D, Barnes W. (1999), "Flexural and shear performance of concrete beams strengthened with Fiber reinforced polymer laminates". Fourth International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures. The American Concrete Institute, SP-188, 959-72.
  59. Kantar, E. and Anil, O.J. (2012), "Low velocity impact behavior of concrete beam strengthened with CFRP strip", Steel Compos. Struct., 12(3), 207-230, http://dx.doi.org/10.12989/scs.2012.12.3.207.
  60. Kamgar, R., Bagherinejad, M.H. and Heidarzadeh, H. (2020), "A new formulation for prediction of the shear capacity of FRP in strengthened reinforced concrete beams", Soft Comput., 24(9), 6871-6887, https://doi.org/10.1007/s00500-019-04325-4.
  61. Khalifa, A., Gold, W.J., Nanni, A. and MI, A.A. (1998), "Contribution of externally bonded FRP to shear capacity of RC flexural members", J. Compos. Construt., 2(4), 195-202, https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(195).
  62. Khalifa, A. and Nanni, A. (2002), "Rehabilitation of rectangular simply supported RC beams with shear deficiencies using CFRP composites", Construct. Build. Mater., 16(3), 135-146, https://doi.org/10.1016/S0950-0618(02)00002-8.
  63. Kim, Y., Ghannoum, W.M. and Jirsa, J.O. (2015), "Shear behavior of full-scale reinforced concrete T-beams strengthened with CFRP strips and anchors", Construct. Build. Mater., 94 1-9, https://doi.org/10.1016/j.conbuildmat.2015.06.005.
  64. Keskin, R.S.O., Arslan, G. and Sengun, K. (2017), "Influence of CFRP on the shear strength of RC and SFRC beams", Construct. Build. Mater., 153, 16-24, https://doi.org/10.1016/j.conbuildmat.2017.06.170.
  65. Korkmaz, H.H., Dere, Y., Ozkilic, Y.O., Bozkurt, M.B., Ecemis, A. S. and Ozdoner, N. (2022), "Excessive snow induced steel roof failures in Turkey", Eng. Fail. Anal., 141, 106661. https://doi.org/10.1016/j.engfailanal.2022.106661
  66. Koutas, L.N., Tetta, Z., Bournas, D.A. and Triantafillou, T.C. (2019), "Strengthening of concrete structures with textile reinforced mortars: state-of-the-art review", J. Compos. Construct., 23(1), 03118001. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000882.
  67. Korotkov, R., Vedernikov, A., Gusev, S., Alajarmeh, O., Akhatov, I. and Safonov, A. (2021), "Shape memory behavior of unidirectional pultruded laminate", Compos. Part A: Appl. Sci. Manufact., 150, 106609. https://doi.org/10.1016/j.compositesa.2021.106609
  68. Lesani, M., Bahaari, M. and Shokrieh, M. (2015), "FRP wrapping for the rehabilitation of Circular Hollow Section (CHS) tubular steel connections", Thin-Walled Struct., 90, 216-234. https://doi.org/10.1016/j.tws.2014.12.013
  69. Lima, J.L. and Barros, J.A. (2007), "Design models for shear strengthening of reinforced concrete beams with externally bonded FRP composites: a statistical vs reliability approach", University of Patras, Patras, Greece, July.
  70. Lignola, G., Prota, A., Manfredi, G. and Cosenza, E. (2006), "Flexural behaviour of RC hollow columns confined with CFRP", Proceedings of 2nd fib Congress, Naples, Italy, paper ID.
  71. Leung, C.K.Y., Chen, Z., Lee, S., Ng, M., Xu, M. and Tang, J. (2007), "Effect of size on the failure of geometrically similar concrete beams strengthened in shear with FRP strips", J. Compos. Construct., 11(5), 487-496, https://doi.org/10.1061/(ASCE)1090-0268(2007)11:5(487).
  72. Luo, Z., Sinaei, H., Ibrahim, Z., Shariati, M., Jumaat, Z., Wakil, K., Pham, B.T., Mohamad, E.T. and Khorami, M. (2019), "Computational and experimental analysis of beam to column joints reinforced with CFRP plates", Steel Compos. Struct., 30(3), 271-280. http://dx.doi.org/10.12989/scs.2019.30.3.271.
  73. Mahbubul, I., Saidur, R. and Amalina, M. (2013), "Thermal conductivity, viscosity and density of R141b refrigerant based nanofluid", Procedia Engineering. 56, 310-315. https://doi.org/10.1016/j.proeng.2013.03.124.
  74. Marthong, C. (2019), "Rehabilitation and strengthening of exterior RC beam column connections using epoxy resin injection and FRP sheet wrapping: Experimental study", Struct. Eng. Mech., 72(6), 723-736. http://dx.doi.org/10.12989/sem.2019.72.6.723.
  75. Minchenkov, K., Vedernikov, A., Safonov, A. and Akhatov, I. (2021), "Thermoplastic pultrusion: A review", Polymers, 13(2), 180. https://doi.org/10.3390/polym13020180.
  76. Mofidi, A. and Chaallal, O. (2011), "Shear strengthening of RC beams with externally bonded FRP composites: Effect of stripwidth-to-strip-spacing ratio", J. Compos. Construct., 15(5), 732-742. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000219.
  77. Mofidi, A. and Chaallal, O. (2011), "Shear strengthening of RC beams with EB FRP: Influencing factors and conceptual debonding model", J. Compos. Construct., 15(1), 62-74. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000153.
  78. Madenci, E., Onuralp Ozkilic, Y. and Gemi, L. (2020a), "Buckling and free vibration analyses of pultruded GFRP laminated composites: Experimental, numerical and analytical investigations", Compos. Struct., 254, 112806. https://doi.org/10.1016/j.compstruct.2020.112806.
  79. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020b), "Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses", Compos. Struct., 242, 112162. https://doi.org/10.1016/j.compstruct.2020.112162.
  80. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020c), "Theoretical investigation on static analysis of pultruded GFRP composite beams", Akademik Platform Muhendislik ve Fen Bilimleri Dergisi. 8(3), 483-490. https://doi.org/10.21541/apjes.734770.
  81. Mohammed, A.A., Manalo, A.C., Ferdous, W., Zhuge, Y., Vijay, P. V., Alkinani, A.Q. and Fam, A. (2020), "State-of-the-art of prefabricated FRP composite jackets for structural repair.", Eng. Sci. Technol. Int. J., 23(5), 1244-1258.
  82. Mostofinejad, D. and Shameli, S.M. (2013), "Externally bonded reinforcement in grooves (EBRIG) technique to postpone debonding of FRP sheets in strengthened concrete beams", Construct. Build. Mater., 38, 751-758. https://doi.org/10.1016/j.conbuildmat.2012.09.030.
  83. Murad, Y.Z. (2021), "Retrofitting interior RC beam-to-column joints subjected to quasi-static loading using NSM CFRP ropes", Structures, 34, 4158-4168. https://doi.org/10.1016/j.istruc.2021.10.024.
  84. Ombres, L. (2015), "Structural performances of reinforced concrete beams strengthened in shear with a cement based fiber composite material", Compos. Struct., 122, 316-329, https://doi.org/10.1016/j.compstruct.2014.11.059.
  85. Osman, B.H., Wu, E., Ji, B. and Abdulhameed, S.S. (2017), "Repair of pre-cracked reinforced concrete (RC) Beams with openings strengthened using FRP sheets under sustained load", Int. J. Concrete Struct. Mater., 11(1), 171-183. https://doi.org/10.1007/s40069-016-0182-3.
  86. Ou, Y. and Zhu, D. (2015), "Tensile behavior of glass fiber reinforced composite at different strain rates and temperatures", Construct. Build. Mater., 96, 648-656. https://doi.org/10.1016/j.conbuildmat.2015.08.044.
  87. Ozkilic, Y.O., Aksoylu, C. and Arslan, M.H. (2021a), "Experimental and numerical investigations of steel fiber reinforced concrete dapped-end purlins", J. Build. Eng., 36, 102119. https://doi.org/10.1016/j.jobe.2020.102119.
  88. Ozkilic, Y.O., Yazman, S., Aksoylu, C., Arslan, M.H. and Gemi, L. (2021b), "Numerical investigation of the parameters influencing the behavior of dapped end prefabricated concrete purlins with and without CFRP strengthening", Construct. Build. Mater., 275, 122173. https://doi.org/10.1016/j.conbuildmat.2020.122173.
  89. Ozkilic, Y.O., Madenci, E. and Gemi, L. (2020), "Tensile and compressive behaviors of the pultruded GFRP lamina", Turkish Journal of Engineering (TUJE). 4(4), 169-175. https://doi.org/10.31127/tuje.631481.
  90. Ozkilic, Y. O., Aksoylu, C., Gemi, L. and Arslan, M.H. (2022), "Behavior of CFRP-strengthened RC beams with circular web openings in shear zones: Numerical study", Structures, 41, 1369-1389. https://doi.org/10.1016/j.istruc.2022.05.061
  91. Panjehpour, M., Abang Ali, A.A. and Aznieta, F.N. (2014), "Energy absorption of reinforced concrete deep beams strengthened with CFRP sheet", Steel Compos. Struct., 16(5), 481-489. http://dx.doi.org/10.12989/scs.2014.16.5.481.
  92. Pellegrino, C. and Vasic, M. (2013), "Assessment of design procedures for the use of externally bonded FRP composites in shear strengthening of reinforced concrete beams", Compos. Part B: Eng., 45(1), 727-741. https://doi.org/10.1016/j.compositesb.2012.07.039.
  93. Petersen, M.R., Yossef, M. and Chen, A. (2017), "Gap between Code Requirements and Current State of Research on Safety Performance of Fiber-Reinforced Polymer for Nonstructural Building Components", Practice Periodical on Structural Design and Construction. 22(4), 04017005. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000324.
  94. Priestley, M.N., Seible, F. and Calvi, G.M. (1996), Seismic Design and Retrofit of Bridges, John Wiley & Sons.
  95. Remennikov, A., Goldston, M. and Sheikh, M.N. (2016), "Impact performance of concrete beams externally bonded with carbon FRP sheets", Mechanics of Structures and Materials: Advancements and Challenges-Hao & Zhang (Eds). Conference: Proceedings of the 24th Australian Conference on the Mechanics of Structures and Materials (ACMSM24), At Perth, Australia.
  96. Rezazadeh, M. (2015), Innovative Methodologies for the Enhancement of the Flexural Strengthening Performance of NSM CFRP Technique for RC beams, Ph.D. Dissertation, Universidade do Minho, Escola de Engenharia.
  97. Safonov, A., Gusev, M., Saratov, A., Konstantinov, A., Sergeichev, I., Konev, S., Gusev, S. and Akhatov, I. (2020), "Modeling of cracking during pultrusion of large-size profiles", Compos. Struct., 235, 111801. https://doi.org/10.1016/j.compstruct.2019.111801
  98. Saribiyik, A. and Caglar, N. (2016), "Flexural strengthening of RC beams with low-strength concrete using GFRP and CFRP", Struct. Eng. Mech. 58(5), 825-845. http://dx.doi.org/10.12989/sem.2016.58.5.825.
  99. Saribiyik, A., Abodan, B. and Balci, M.T. (2021), "Experimental study on shear strengthening of RC beams with basalt FRP strips using different wrapping methods", Eng. Sci. Technol., 24(1), 192-204, https://doi.org/10.1016/j.jestch.2020.06.003.
  100. Sas, G., Taljsten, B., Barros, J., Lima, J. and Carolin, A. (2009), "Are available models reliable for predicting the FRP contribution to the shear resistance of RC beams?", J. Compos. Construct., 13(6), 514-534. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000045.
  101. Saeed, Y.M., Aules, W.A., Rad, F.N. and Raad, A.M. (2020), "Tensile behavior of FRP anchors made from CFRP ropes epoxy-bonded to uncracked concretefor flexural strengthening of RC columns", Case Studies Construct. Mater., 13, e00435. https://doi.org/10.1016/j.cscm.2020.e00435.
  102. Siddika, A., Saha, K., Mahmud, M.S., Roy, S.C., Mamun, M.A.A. and Alyousef, R. (2019), "Performance and failure analysis of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete (RC) beams", SN Appl. Sci., 1(12), 1617. https://doi.org/10.1007/s42452-019-1675-x.
  103. Siddika, A., Shojib, M.H.H., Hossain, M.M., Hossain, M.I., Mamun, M.A.A., Alyousef, R. and Amran, Y.H.M. (2019), "Flexural performance of wire mesh and geotextilestrengthened reinforced concrete beam", SN Appl. Sci., 1(11), 1324. https://doi.org/10.1007/s42452-019-1373-8.
  104. Siddika, A., Mamun, M.A.A., Alyousef, R. and Amran, Y.H.M. (2019), "Strengthening of reinforced concrete beams by using fiber-reinforced polymer composites: A review", J. Build. Eng., 25, 100798. https://doi.org/10.1016/j.jobe.2019.100798.
  105. Siddika, A., Al Mamun, M.A., Ferdous, W. and Alyousef, R. (2020), "Performances, challenges and opportunities in strengthening reinforced concrete structures by using FRPs-A state-of-the-art review", Eng. Fail. Anal., 111, 104480. https://doi.org/10.1016/j.engfailanal.2020.104480
  106. Smith, S.T. and Teng, J.G. (2002), "FRP-strengthened RC beams. I: review of debonding strength models", Eng. Struct., 24(4), 385-395. https://doi.org/10.1016/S0141-0296(01)00105-5.
  107. Sorrentino, L., Turchetta, S. and Bellini, C. (2017), "In process monitoring of cutting temperature during the drilling of FRP laminate", Compos. Struct., 168, 549-561. https://doi.org/10.1016/j.compstruct.2017.02.079.
  108. Sogut, K., Dirar, S., Theofanous, M., Faramarzi, A. and Nayak, A. N. (2021), "Effect of transverse and longitudinal reinforcement ratios on the behaviour of RC T-beams shear-strengthened with embedded FRP bars", Compos. Struct., 262, 113622. https://doi.org/10.1016/j.compstruct.2021.113622.
  109. Sundarraja, M.C. and Rajamohan, S. (2009), "Strengthening of RC beams in shear using GFRP inclined strips - An experimental study", Construct. Build. Mater., 23(2), 856-864. https://doi.org/10.1016/j.conbuildmat.2008.04.008.
  110. Taleb Obaidat, Y., Barham, W.S. and Aljarah, A.H. (2020), "New anchorage technique for NSM-CFRP flexural strengthened RC beam using steel clamped end plate", Construct. Build. Mater., 263, 120246, https://doi.org/10.1016/j.conbuildmat.2020.120246.
  111. TBEC (2019), Turkish Building Earthquake Code Government of Republic of Ankara, Turkey.
  112. Triantafillou, T.C. (1998), "Shear strengthening of reinforced concrete beams using epoxy-bonded FRP composites", ACI Struct. J., 95 107-115.
  113. Tong, Z., Chen, Y., Huang, Q., Song, X., Luo, B. and Xu, X. (2020), "Experimental and analytical study on continuous GFRP-concrete decks with steel bars", Struct. Eng. Mech., 76(6), 737-749. http://dx.doi.org/10.12989/sem.2020.76.6.737.
  114. Vedernikov, A., Safonov, A., Tucci, F., Carlone, P. and Akhatov, I. (2021a), "Modeling spring-in of l-shaped structural profiles pultruded at different pulling speeds", Polymers, 13(16), 2748. https://doi.org/10.3390/polym13162748.
  115. Vedernikov, A., Tucci, F., Carlone, P., Gusev, S., Konev, S., Firsov, D., Akhatov, I. and Safonov, A. (2021b), "Effects of pulling speed on structural performance of L-shaped pultruded profiles", Compos. Struct., 255, 112967. https://doi.org/10.1016/j.compstruct.2020.112967.
  116. Vedernikov, A., Minchenkov, K., Gusev, S., Sulimov, A., Zhou, P., Li, C., Xian, G., Akhatov, I. and Safonov, A. (2022), "Effects of the pre-consolidated materials manufacturing method on the Mechanical Properties of Pultruded Thermoplastic Composites". Polymers, 14(11), 2246.s
  117. Yuan, C., Chen, W., Pham, T.M. and Hao, H. (2018), "Bond behavior between basalt fibres reinforced polymer sheets and steel fibres reinforced concrete", Eng. Struct., 176, 812-824. https://doi.org/10.1016/j.engstruct.2018.09.052.
  118. Zhang, K. and Sun, Q. (2018), "Experimental study of reinforced concrete T-Beams strengthened with a composite of prestressed steel wire ropes embedded in polyurethane Cement (PSWR-PUC)", Int. J. Civil Eng., 16(9), 1109-1123. https://doi.org/10.1007/s40999-017-0264-x.
  119. Xie, Q., Sinaei, H., Shariati, M., Khorami, M., Mohamad, E.T. and Bui, D.T. (2019), "An experimental study on the effect of CFRP on behavior of reinforce concrete beam column connections", Steel Compos. Struct., 30(5), 433-441. http://dx.doi.org/10.12989/scs.2019.30.5.433.