DOI QR코드

DOI QR Code

Development of automatic system for evaluating the stress redistribution in structural members of a steel cable-stayed bridge due to cable stress relaxation

  • Hong, Tien-Thang (Department of Civil and Environmental Engineering, Sejong University) ;
  • Kim, Jung J. (Department of Civil and Environmental Engineering, Kyungnam University) ;
  • Thai, Duc-Kien (Department of Civil and Environmental Engineering, Sejong University) ;
  • Kim, Seung-Eock (Department of Civil and Environmental Engineering, Sejong University)
  • 투고 : 2022.05.11
  • 심사 : 2022.09.13
  • 발행 : 2022.09.25

초록

In this study, a graphical automatic system is developed in order to investigate the stress redistribution of structural members in a steel cable-stayed bridge. The generalized Maxwell model is selected for stress relaxation estimation, and it is carefully verified and applied to all the cable members of a steel cable-stayed bridge to investigate its stress relaxation. A set of stress relaxation parameters in all cables is determined using the fmincon optimization function. The stress redistribution of the steel cable-stayed bridge is then analyzed using ABAQUS. To shorten the investigation time, all the aforementioned phases are built up to be an automatic system. The automatic system is then employed to investigate the effect of cable cross-section areas and girder spans on stress redistribution. The findings from these studies show that the initial tension in the cables of a steel cable-stayed bridge should be kept to less than 55% of the cable's ultimate strength to reduce the effect of cable stress relaxation. The cable space in a steel cable-stayed bridge should be limited to 15,000 mm to minimize the effect of cable stress relaxation. In comparison to other structural members of a steel cable-stayed bridge, the girders experience a significant stress redistribution.

키워드

과제정보

The research described in this paper was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2B5B01002577).

참고문헌

  1. Atmaca, B. (2021), Determination of proper post-tensioning cable force of cable-stayed footbridge with TLBO algorithm, Steel Compos. Struct., 40(6), 805-816. https://doi.org/10.12989/scs.2021.40.6.805.
  2. Atmaca, B., Dede, T. and I,M.G.I.N.S.K. (2020), "Optimization of cables size and prestressing force for a single pylon cablestayed bridge with Jaya algorithm", Steel Compos. Struct., 34(6), 853-862. https://doi.org/10.12989/scs.2020.34.6.853.
  3. Brnic, J., Brcic, M., Krscanski, S., Lanc, D. and Chen, S. (2019), "Uniaxial fatigue, creep and stress-strain responses of steel 30CrNiMo8", Steel Compos. Struct., 31(4), 409-416. https://doi.org/10.12989/scs.2019.31.4.409.
  4. CECS212-2006 (2006), Technical Specification for Prestressed Steel Structures, China Planning Press; Beijing, China.
  5. Cesarek, P., Kramar, M. and Kolsek, J. (2018), "Effect of creep on behaviour of steel structural assemblies in fires", Steel Compos. Struct., 29(4), 423-435. https://doi.org/10.12989/scs.2018.29.4.423.
  6. Chen, D.L., Yang, P.F. and Lai, Y.S. (2012), A review of threedimensional viscoelastic models with an application to viscoelasticity characterization using nanoindentation, Microelectron. Reliab., 52(3), 541-558. https://doi.org/10.1016/j.microrel.2011.10.001.
  7. Cluley, N.C. and Shepherd, R. (1996), "Analysis of concrete cable-stayed bridges for creep, shrinkage and relaxation effects", Comput. Struct., 58(2), 337-350. https://doi.org/10.1016/0045-7949(95)00131-Y.
  8. CEB-FIP Model Code 1990 (1993), Design Code, Comite EuroInternational du Beton; London, UK.
  9. Conway, T.A. and Costello, G.A. (1993), "Viscoelastic response of a simple strand", Int. J. Solids Struct., 30(4), 553-567. https://doi.org/10.1016/0020-7683(93)90187-C.
  10. Destrebecq, J.F. and Jurkiewiez, B. (2001), "A numerical method for the analysis of rheologic effects in concrete bridges", Comput. Civ. Infrastruct. Eng., 16(5), 347-364. https://doi.org/10.1111/0885-9507.00238.
  11. GB/T10120-2013 (2013), Metallic Materials-Tensile Stress Relaxation-Method of Test, Beijing, China.
  12. Gou, H., Wang, W., Shi, X., Pu, Q. and Kang, R. (2018), "Behavior of steel-concrete composite cable anchorage system", Steel Compos. Struct., 26(1), 115-123. https://doi.org/10.12989/scs.2018.26.1.115.
  13. ISO 15630-1 (2010), Steel for the Reinforcement and PreStressing of Concrete-Test Methods-part 1: Reinforcing Bars, Wire Rod and Wire. Italian Board of Standardization (UNI).
  14. Ivanco, V., Kmet, S. and Fedorko, G. (2016), "Finite element simulation of creep of spiral strands", Eng. Struct., 117, 220-238. https://doi.org/10.1016/j.engstruct.2016.02.053.
  15. Kmet, S. and L.H. (2004), "Non-linear rheology of tension structural element under single and variable loading history Part II: Creep of steel rope-examples and parametrical study", Struct. Eng. Mech., 18(5) (An international journal), 591-607. https://doi.org/10.12989/sem.2004.18.5.591
  16. Liu, C.H., Au, F.T.K. and Lee, P.K.K. (2006), "Estimation of shrinkage effects on reinforced concrete podiums", HKIE Trans. Hong Kong Inst. Eng., 13(4), 33-43. https://doi.org/10.1080/1023697X.2006.10668059.
  17. Nicholas, W.T. (2012), THE PHENOMENOLOGICAL THEORY OF LINEAR VISCOELASTIC BEHAVIOR: AN INTRODUCTION. Springer Science & Business Media, Berlin, German.
  18. Scattarreggia, N., Galik, W., Calvi, P.M., Moratti, M., Orgnoni, A. and Pinho, R. (2022), "Analytical and numerical analysis of the torsional response of the multi-cell deck of a collapsed cablestayed bridge", Eng. Struct., 265(May), 114412. https://doi.org/10.1016/j.engstruct.2022.114412.
  19. Scattarreggia, N., Salomone, R., Moratti, M., Malomo, D., Pinho, R., and Calvi, G.M. (2022), "Collapse analysis of the multi-span reinforced concrete arch bridge of Caprigliola, Italy", Eng. Struct., 251(PA), 113375. https://doi.org/10.1016/j.engstruct.2021.113375.
  20. Sinha, U. and Levinson, D. (1992), "Tensile stress relaxation in high-strength spring steel wire", J. Test. Eval., 20(2), 114-120. https://doi.org/10.1520/JTE11908J.
  21. Song, W.K. and Kim, S.E. (2007), "Analysis of the overall collapse mechanism of cable-stayed bridges with different cable layouts", Eng. Struct., 29(9), 2133-2142. https://doi.org/10.1016/j.engstruct.2006.11.005.
  22. Thai, H.T. and Kim, S.E. (2012), "Second-order inelastic analysis of cable-stayed bridges", Finite Elem. Anal. Des., 53, 48-55. https://doi.org/10.1016/j.finel.2011.07.002.
  23. Walther, R., Houriet, B., Isler, W., Moia Klein, P. and Francois, J. (1999), CABLE STAYED BRIDGES, Thomas Telford, London, UK.
  24. Wan, S.C., Huang, Q. and Guan, J. (2019), "Strengthening of steel-concrete composite beams with prestressed CFRP plates using an innovative anchorage system", Steel Compos. Struct., 32(1), 21-35. https://doi.org/10.12989/scs.2019.32.1.021.
  25. Wang, X., Chen, Z., Liu, H. and Yu, Y. (2018), "Experimental study on stress relaxation properties of structural cables", Constr. Build. Mater., 175, 777-789. https://doi.org/10.1016/j.conbuildmat.2018.04.224.
  26. Wang, X., Chen, Z., Yu, Y. and Liu, H. (2017), "An innovative approach for numerical simulation of stress relaxation of structural cables", Int. J. Mech. Sci., 131-132(May), 971-981. https://doi.org/10.1016/j.ijmecsci.2017.08.011.
  27. Yu, Y., Chen, Z. and Chen, A. (2019), "Experimental study of a pretensioned connection for modular buildings", Steel Compos. Struct., 31(3), 217-232. https://doi.org/10.12989/scs.2019.31.3.217.
  28. Zeren, A. and Zeren, M. (2003), "Stress relaxation properties of prestressed steel wires", J. Mater. Process. Technol., 141(1), 86- 92. https://doi.org/10.1016/S0924-0136(03)00131-6.
  29. Zhang, G., Liu, Y., Liu, J., Lan, S. and Yang, J. (2022), "Causes and statistical characteristics of bridge failures: A review", J. Traffic Transp. Eng., 9(3), 388-406. https://doi.org/10.1016/j.jtte.2021.12.003.
  30. Zhang, M., He, J., Meng, F. and Gong, X. (2019), "Study on stress relaxation of simple spiral strand subjected to tensile load based on semi-analytical method", Adv. Eng. Softw., 128(August 2018), 34-45. https://doi.org/10.1016/j.advengsoft.2018.11.007.
  31. Zhang, Y., Feng, Q., Wang, G. and Xu, R. (2021), "Analytical model for the bending of parallel wire cables considering interactions among wires", Int. J. Mech. Sci., 194(November 2020). https://doi.org/10.1016/j.ijmecsci.2020.106192.