Acknowledgement
The research described in this paper was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2B5B01002577).
References
- Atmaca, B. (2021), Determination of proper post-tensioning cable force of cable-stayed footbridge with TLBO algorithm, Steel Compos. Struct., 40(6), 805-816. https://doi.org/10.12989/scs.2021.40.6.805.
- Atmaca, B., Dede, T. and I,M.G.I.N.S.K. (2020), "Optimization of cables size and prestressing force for a single pylon cablestayed bridge with Jaya algorithm", Steel Compos. Struct., 34(6), 853-862. https://doi.org/10.12989/scs.2020.34.6.853.
- Brnic, J., Brcic, M., Krscanski, S., Lanc, D. and Chen, S. (2019), "Uniaxial fatigue, creep and stress-strain responses of steel 30CrNiMo8", Steel Compos. Struct., 31(4), 409-416. https://doi.org/10.12989/scs.2019.31.4.409.
- CECS212-2006 (2006), Technical Specification for Prestressed Steel Structures, China Planning Press; Beijing, China.
- Cesarek, P., Kramar, M. and Kolsek, J. (2018), "Effect of creep on behaviour of steel structural assemblies in fires", Steel Compos. Struct., 29(4), 423-435. https://doi.org/10.12989/scs.2018.29.4.423.
- Chen, D.L., Yang, P.F. and Lai, Y.S. (2012), A review of threedimensional viscoelastic models with an application to viscoelasticity characterization using nanoindentation, Microelectron. Reliab., 52(3), 541-558. https://doi.org/10.1016/j.microrel.2011.10.001.
- Cluley, N.C. and Shepherd, R. (1996), "Analysis of concrete cable-stayed bridges for creep, shrinkage and relaxation effects", Comput. Struct., 58(2), 337-350. https://doi.org/10.1016/0045-7949(95)00131-Y.
- CEB-FIP Model Code 1990 (1993), Design Code, Comite EuroInternational du Beton; London, UK.
- Conway, T.A. and Costello, G.A. (1993), "Viscoelastic response of a simple strand", Int. J. Solids Struct., 30(4), 553-567. https://doi.org/10.1016/0020-7683(93)90187-C.
- Destrebecq, J.F. and Jurkiewiez, B. (2001), "A numerical method for the analysis of rheologic effects in concrete bridges", Comput. Civ. Infrastruct. Eng., 16(5), 347-364. https://doi.org/10.1111/0885-9507.00238.
- GB/T10120-2013 (2013), Metallic Materials-Tensile Stress Relaxation-Method of Test, Beijing, China.
- Gou, H., Wang, W., Shi, X., Pu, Q. and Kang, R. (2018), "Behavior of steel-concrete composite cable anchorage system", Steel Compos. Struct., 26(1), 115-123. https://doi.org/10.12989/scs.2018.26.1.115.
- ISO 15630-1 (2010), Steel for the Reinforcement and PreStressing of Concrete-Test Methods-part 1: Reinforcing Bars, Wire Rod and Wire. Italian Board of Standardization (UNI).
- Ivanco, V., Kmet, S. and Fedorko, G. (2016), "Finite element simulation of creep of spiral strands", Eng. Struct., 117, 220-238. https://doi.org/10.1016/j.engstruct.2016.02.053.
- Kmet, S. and L.H. (2004), "Non-linear rheology of tension structural element under single and variable loading history Part II: Creep of steel rope-examples and parametrical study", Struct. Eng. Mech., 18(5) (An international journal), 591-607. https://doi.org/10.12989/sem.2004.18.5.591
- Liu, C.H., Au, F.T.K. and Lee, P.K.K. (2006), "Estimation of shrinkage effects on reinforced concrete podiums", HKIE Trans. Hong Kong Inst. Eng., 13(4), 33-43. https://doi.org/10.1080/1023697X.2006.10668059.
- Nicholas, W.T. (2012), THE PHENOMENOLOGICAL THEORY OF LINEAR VISCOELASTIC BEHAVIOR: AN INTRODUCTION. Springer Science & Business Media, Berlin, German.
- Scattarreggia, N., Galik, W., Calvi, P.M., Moratti, M., Orgnoni, A. and Pinho, R. (2022), "Analytical and numerical analysis of the torsional response of the multi-cell deck of a collapsed cablestayed bridge", Eng. Struct., 265(May), 114412. https://doi.org/10.1016/j.engstruct.2022.114412.
- Scattarreggia, N., Salomone, R., Moratti, M., Malomo, D., Pinho, R., and Calvi, G.M. (2022), "Collapse analysis of the multi-span reinforced concrete arch bridge of Caprigliola, Italy", Eng. Struct., 251(PA), 113375. https://doi.org/10.1016/j.engstruct.2021.113375.
- Sinha, U. and Levinson, D. (1992), "Tensile stress relaxation in high-strength spring steel wire", J. Test. Eval., 20(2), 114-120. https://doi.org/10.1520/JTE11908J.
- Song, W.K. and Kim, S.E. (2007), "Analysis of the overall collapse mechanism of cable-stayed bridges with different cable layouts", Eng. Struct., 29(9), 2133-2142. https://doi.org/10.1016/j.engstruct.2006.11.005.
- Thai, H.T. and Kim, S.E. (2012), "Second-order inelastic analysis of cable-stayed bridges", Finite Elem. Anal. Des., 53, 48-55. https://doi.org/10.1016/j.finel.2011.07.002.
- Walther, R., Houriet, B., Isler, W., Moia Klein, P. and Francois, J. (1999), CABLE STAYED BRIDGES, Thomas Telford, London, UK.
- Wan, S.C., Huang, Q. and Guan, J. (2019), "Strengthening of steel-concrete composite beams with prestressed CFRP plates using an innovative anchorage system", Steel Compos. Struct., 32(1), 21-35. https://doi.org/10.12989/scs.2019.32.1.021.
- Wang, X., Chen, Z., Liu, H. and Yu, Y. (2018), "Experimental study on stress relaxation properties of structural cables", Constr. Build. Mater., 175, 777-789. https://doi.org/10.1016/j.conbuildmat.2018.04.224.
- Wang, X., Chen, Z., Yu, Y. and Liu, H. (2017), "An innovative approach for numerical simulation of stress relaxation of structural cables", Int. J. Mech. Sci., 131-132(May), 971-981. https://doi.org/10.1016/j.ijmecsci.2017.08.011.
- Yu, Y., Chen, Z. and Chen, A. (2019), "Experimental study of a pretensioned connection for modular buildings", Steel Compos. Struct., 31(3), 217-232. https://doi.org/10.12989/scs.2019.31.3.217.
- Zeren, A. and Zeren, M. (2003), "Stress relaxation properties of prestressed steel wires", J. Mater. Process. Technol., 141(1), 86- 92. https://doi.org/10.1016/S0924-0136(03)00131-6.
- Zhang, G., Liu, Y., Liu, J., Lan, S. and Yang, J. (2022), "Causes and statistical characteristics of bridge failures: A review", J. Traffic Transp. Eng., 9(3), 388-406. https://doi.org/10.1016/j.jtte.2021.12.003.
- Zhang, M., He, J., Meng, F. and Gong, X. (2019), "Study on stress relaxation of simple spiral strand subjected to tensile load based on semi-analytical method", Adv. Eng. Softw., 128(August 2018), 34-45. https://doi.org/10.1016/j.advengsoft.2018.11.007.
- Zhang, Y., Feng, Q., Wang, G. and Xu, R. (2021), "Analytical model for the bending of parallel wire cables considering interactions among wires", Int. J. Mech. Sci., 194(November 2020). https://doi.org/10.1016/j.ijmecsci.2020.106192.