DOI QR코드

DOI QR Code

Fire resistance prediction of slim-floor asymmetric steel beams using single hidden layer ANN models that employ multiple activation functions

  • Asteris, Panagiotis G. (Computational Mechanics Laboratory, School of Pedagogical and Technological Education) ;
  • Maraveas, Chrysanthos (Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens) ;
  • Chountalas, Athanasios T. (Computational Mechanics Laboratory, School of Pedagogical and Technological Education) ;
  • Sophianopoulos, Dimitrios S. (Department of Civil Engineering, University of Thessaly) ;
  • Alam, Naveed (FireSERT, School of Built Environment, Ulster University)
  • Received : 2022.04.28
  • Accepted : 2022.09.15
  • Published : 2022.09.25

Abstract

In this paper a mathematical model for the prediction of the fire resistance of slim-floor steel beams based on an Artificial Neural Network modeling procedure is presented. The artificial neural network models are trained and tested using an analytical database compiled for this purpose from analytical results based on FEM. The proposed model was selected as the optimum from a plethora of alternatives, employing different activation functions in the context of Artificial Neural Network technique. The performance of the developed model was compared against analytical results, employing several performance indices. It was found that the proposed model achieves remarkably improved predictions of the fire resistance of slim-floor steel beams. Moreover, based on the optimum developed AN model a closed-form equation for the estimation of fire resistance is derived, which can prove a useful tool for researchers and engineers, while at the same time can effectively support the teaching of this subject at an academic level.

Keywords

References

  1. Akbar, H., Suryana, N. and Sahib, S. (2011), "Training neural networks using Clonal Selection Algorithm and Particle Swarm Optimization: A comparisons for 3D object recognition", 2011 11th International Conference on Hybrid Intelligent Systems (HIS). 692-697.
  2. Ahmed I.M. and Tsavdaridis K.D. (2019), "The evolution of composite flooring systems: applications, testing, modelling and eurocode design approaches", J. Constr. Steel Res., 155, 286-300. https://doi.org/10.1016/j.jcsr.2019.01.007.
  3. Ahn, J.K. and Lee, C.H. (2017), "Fire behavior and resistance of partially encased and slim-floor composite beams", J. Constr. Steel Res., 129, 276-285. https://doi.org/10.1016/j.jcsr.2016.11.018.
  4. Alam, N., Maraveas, C., Tsavdaridis, K.D. and Nadjai, A. (2021a), "Performance of Ultra Shallow Floor Beams (USFB) exposed to standard and natural fires", J. Build. Eng., 102192. https://doi.org/10.1016/j.jobe.2021.102192.
  5. Alam N., Nadjai A., Hanus F., Kahanji C. and Vassart O., (2021b), "Experimental and numerical investigations on slim floor beams exposed to fire", J. Build. Eng., 42, 102810, https://doi.org/10.1016/j.jobe.2021.102810.
  6. Alam, N., Nadjai, A., Ali, F. and Nadjai, W. (2018a), "Structural response of unprotected and protected slim floors in fire", J. Constr. Steel Res., 142, 44-54. https://doi.org/10.1016/j.jcsr.2017.12.009.
  7. Alam, N., Nadjai, A., Ali, F., Vassart, O. and Hanus, F. (2018b). "Experimental and Analytical Investigations on Thermal Performance of Slim Floor Beams with Web Openings in Fire", Proceedings of the 10th International Conference on Structures in Fire, Belfast, UK,
  8. Alam, N., Nadjai, A., Maraveas, C., Tsavdaridis, K. and Ali, F. (2018c), "Effect of air-gap on performance of fabricated slim floor beams in fire", Proceedings of the 9th International Conference on Advances in Steel Structures, Hong-Kong, China, https://doi.org/10.18057/ICASS2018.xxx.
  9. Alam, N., Nadjai, A., Maraveas, C., Tsarvdaridis, K. and Kahanji, C. (2019a), "Effect of air-gap on response of fabricated slim floor beams in fire", J. Struct. Fire Eng., https://doi.org/10.1108/JSFE-04-2018-0011.
  10. Alam, N., Nadjai, A., Maraveas, C., Tsavdaridis, K.D. and Ali, F. (2018d), "Response of Asymmetric Slim Floor Beams in Parametric-Fires", J. Phys. Conference Series, https://doi.org/10.1088/1742-6596/1107/3/032009.
  11. Albero, V., Espinos, A., Serra, E., Romero, M. and Hospitaler, A. (2019), "Numerical study on the flexural behaviour of slimfloor beams with hollow core slabs at elevated temperature", Eng. Struct., 180, 561-573. https://doi.org/10.1016/j.engstruct.2018.11.061.
  12. Albero, V., Serra, E., Espinos, A., Romero, M.L. and Hospitaler, A. (2020), "Innovative solutions for enhancing the fire resistance of slim-floor beams: Thermal experiments", J. Constr. Steel Res., 165, 105897. https://doi.org/10.1016/j.jcsr.2019.105897.
  13. Alavi, A.H. and Gandomi, A.H. (2012), "Energy-based numerical models for assessment of soil liquefaction", Geosci. Front., 3(4), 541-555. https://doi.org/10.1016/j.gsf.2011.12.008.
  14. Apostolopoulou, M., Armaghani, D.J., Bakolas, A., Douvika, M.G., Moropoulou, A. and Asteris, P.G. (2019), "Compressive strength of natural hydraulic lime mortars using soft computing techniques", Procedia Structural Integrity, 17, 914-923. https://doi.org/10.1016/j.prostr.2019.08.122.
  15. Apostolopoulou, M., Asteris, P.G., Armaghani, D.J., Douvika, MG., Lourenco, P.B., Cavaleri, L., Bakolas, A. and Moropoulou, A. (2020). "Mapping and holistic design of natural hydraulic lime mortars", Cement Concrete Res., 136, 106167, https://doi.org/10.1016/j.cemconres.2020.106167.
  16. Aqil, M., Kita, I., Yano, A. and Nishiyama, S. (2007). "A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff", J. Hydrology, 337, 22-34. https://doi.org/10.1016/j.jhydrol.2007.01.013.
  17. Armaghani, D.J., Hajihassani, M., Sohaei, H., Mohamad, E.T., Marto, A., Motaghedi, H. and Moghaddam, M.R. (2015), "Neuro-fuzzy technique to predict air-overpressure induced by blasting", Arab. J. Geosci., 8(12), 10937-10950. https://doi.org/10.1007/s12517-015-1984-3.
  18. Armaghani, D.J., Momeni, E. and Asteris, P.G. (2020). "Application of group method of data handling technique in assessing deformation of rock mass", Metaheuristic Computing and Applications, 1(1), 1-18. http://dx.doi.org/10.12989/mca.2020.1.1.001
  19. Armaghani, D.J. and Asteris, P.G. (2021). "A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength", Neural Comput. Appl., 33(9), 4501-4532, http://dx.doi.org/10.1007/s00521-020-05244-4.
  20. Armaghani, D.J., Mamou, A., Maraveas, C., Roussis, P.C., Siorikis, V.G., Skentou, A.D. and Asteris, P.G. (2021), "Predicting the unconfined compressive strength of granite using only two nondestructive test indexes", Geomechanics and Engineering, 25(4).
  21. ASTM E119-16 (2016), American Society for Testing and Materials, E119-16 - Standard Test Methods for Fire Tests of Building Construction and Materials.
  22. Asteris, P.G., Ashrafian, A. and Rezaie-Balf, M. (2019), Prediction of the compressive strength of self-compacting concrete using surrogate models, Comput. Concrete, 24(2), 137-150.
  23. Asteris, P.G., Apostolopoulou, M., Skentou, A.D. and Moropoulou, A. (2019), "Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars", Comput. Concrete, 24, 329-345. https://doi.org/10.12989/cac.2019.24.4.329.
  24. Asteris, P.G and Mokos, V.G. (2020). "Concrete Compressive Strength using Artificial Neural Networks", Neural Comput. Appl., 32, 1807-11826, https://doi.org/10.1007/s00521-019-04663-2.
  25. Asteris, P.G., Lemonis, M.E., Nguyen, T.-A., Le, H.V. and Pham, B.T. (2021a), "Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes", Steel Compos. Struct., 39(4), 471-491. https://doi.org/10.12989/scs.2021.39.4.471.
  26. Asteris, P.G., Skentou, A.D., Bardhan, A., Samui, P. and Pilakoutas, K. (2021b), "Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models", Cement Concrete Res., 145, 106449, https://doi.org/10.1016/j.cemconres.2021.106449.
  27. Asteris, P.G., Koopialipoor, M., Armaghani, D.J., Kotsonis, E.A. and Lourenco, P.B. (2021c), "Prediction of cement-based mortars compressive strength using machine learning techniques, Neural Comput. Appl., https://doi.org/10.1007/s00521-021-06004-8.
  28. Asteris, P.G., Skentou, A.D., Bardhan, A., Samui, P. and Lourenco, P.B. (2021d), "Soft computing techniques for the prediction of concrete compressive strength using Non-Destructive tests", Construct. Build. Mater., 303, 124450, https://doi.org/10.1016/j.conbuildmat.2021.124450.
  29. Bailey, C. (1999), "The behaviour of asymmetric slim floor steel beams in fire", J. Constr. Steel Res., 50(3), 235-257. https://doi.org/10.1016/S0143-974X(98)00247-8.
  30. Bailey, C. (2003), "Large scale fire test on a composite slim-floor system", Steel Compos. Struct., 3(3), 153-168. https://doi.org/10.12989/scs.2003.3.3.153.
  31. Battiti, R. (1992), "First- and second-order methods for learning: Between steepest descent and newtons method", Neural Comput., 4, 141-166. https://doi.org/10.1162/neco.1992.4.2.141.
  32. Bilim, C., Atis, C.D., Tanyildizi, H. and Karahan, O. (2009), "Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network", Adv. Eng. Softw., 40(5), 334-340, https://doi.org/10.1016/j.advengsoft.2008.05.005.
  33. Both, K., Fellinger, J. and Twilt, L. (1997), "Shallow floor construction with deep composite deck: from fire tests to simple calculation rules", Heron. 42(3), 145-158. http://heronjournal.nl/42-3/2.pdf.
  34. Brownlee, J. (2016), Master Machine Learning Algorithms: Discover How They Work and Implement Them From Scratch, Machine Learning Mastery.
  35. BS 476-20 (1987), BS 476-20 - Fire tests on Building Materials and Structures, in: Method for Determination of the Fire Resistance of Elements of Construction (General Principles), London. British Standards Institution
  36. EN1994-1-2 (2009), CEN European Committee for Standardization, EN 1994-1-2, Eurocode 4: Design of Composite Steel and Concrete Structures, BSI British Standards, Brussels.
  37. Du, K.L. and Swamy, M.N. (2013), Neural Networks and Statistical Learning, Springer Science & Business Media.
  38. Duan, Z.H., Kou, S.C. and Poon, C.S. (2013), "Prediction of compressive strength of recycled aggregate concrete using artificial neural networks", Construct. Build. Mater., 40, 1200-1206. https://doi.org/10.1016/j.conbuildmat.2012.04.063.
  39. Duan, J., Asteris, P.G., Nguyen, H., Bui, X.N. and Moayedi, H. (2021), "A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICAXGBoost model", Eng. Comput., 37(4), 3329-3346. https://doi.org/10.1007/s00366-020-01003-0.
  40. Ellobody, E. (2011), "Nonlinear behaviour of unprotected composite slim floor steel beams exposed to different fire conditions", Thin-Wall. Struct., 49(6), 762-771. https://doi.org/10.1016/j.tws.2011.02.002.
  41. Gupta, R., Gijzen van, M.B. and Vuik, C.K. (2013), "Efficient two-level preconditioned conjugate gradient method on the GPU", In High Performance Computing for Computational Science - VECPAR 2012, 36-49. Springer, Berlin. https://doi.org/10.1007/978-3-642-38718-0_7.
  42. Huang, L., Asteris, P.G., Koopialipoor, M., Armaghani, D.J. and Tahir, M.M. (2019), "Invasive weed optimization techniquebased ANN to the prediction of rock tensile strength", Appl. Sci., 9, 5372, https://doi.org/10.3390/app9245372.
  43. ISO 834 (1999), "834: Fire resistance tests-elements of building construction", Proceedings of the International Organization for Standardization, Geneva, Switzerland.
  44. Kayacan, E. and Khanesar, M.A. (2015). Fuzzy Neural Networks for Real Time Control Applications: Concepts, Modeling and Algorithms for Fast Learning. 1. Butterworth-Heinemann.
  45. Kechagias, J., Tsiolikas, A., Asteris, P. and Vaxevanidis, N. (2018), "Optimizing ANN performance using DOE: Application on turning of a titanium alloy", MATEC Web of Conferences, 178, 01017, https://doi.org/10.1051/matecconf/201817801017.
  46. Kim, H.J., Kim, H.Y. and Park, S.Y. (2011), "An experimental study on fire resistance of Slim Floor beam", Appl. Mech. Mater., 82, 752-757. https://doi.org/10.4028/www.scientific.net/AMM.82.752.
  47. Le, T.T., Asteris, P.G. and Lemonis, M.E. (2021), "Prediction of axial load capacity of rectangular concrete-filled steel tube columns using machine learning techniques", Eng. Comput., https://doi.org/10.1007/s00366-021-01461-0.
  48. Lourakis, M.I.A. (2005), "A brief description of the Levenberg-Marquardt algorithm implemented by levmar", Hellas (FORTH), Institute of Computer Science Foundation for Research and Technology, http://www.ics.forth.gr/~lourakis/levmar/levmar.
  49. Ly, H.B., Pham, B.T., Le, L.M., Le, T.T., Le, V.M. and Asteris, P.G. (2021), "Estimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate models", Neural Comput. Appl., 33(8), 3437-3458. https://doi.org/10.1007/s00521-020-05214-w.
  50. Ma, Z. and Makelainen, P. (2000), "Behavior of composite slim floor structures in fire", J. Struct. Eng., 126(7), 830-837. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:7(830).
  51. Ma, Z. and Makelainen, P. (2006), "Structural behaviour of composite slim floor frames in fire conditions", J. Constr. Steel Res., 62(12), 1282-1289, https://doi.org/10.1016/j.jcsr.2006.04.026.
  52. Makelainen, P. and Ma, Z. (2000), "Fire resistance of composite slim floor beams", J. Constr. Steel Res., 54(3), 345-363. https://doi.org/10.1016/S0143-974X(99)00059-0.
  53. Maraveas, C., Wang, Y.C. and Swailes, T., (2013), "Thermal and Mechanical properties of 19th century fireproof flooring systems at elevated temperatures", Constr. Build., Mat., 48, 248-264. https://doi.org/10.1016/j.conbuildmat.2013.06.084.
  54. Maraveas, C., Wang, Y.C. and Swailes, T. (2014), "Fire resistance of 19th century fireproof flooring systems: a sensitivity analysis", Constr. Build. Mat., 55, 69-81. https://doi.org/10.1016/j.conbuildmat.2014.01.022.
  55. Maraveas, C. (2014), "Numerical analysis of DELTA composite beams in fire", Proceedings of the 7th European conference on steel and composite structures-EUROSTEEL.
  56. Maraveas, C. (2017a), "Fire resistance of DELTABEAM® composite beams: a numerical investigation", J. Struct. Fire Eng., 8(4), 338-353. https://doi.org/10.1108/JSFE-05-2016-0003.
  57. Maraveas, C., Wang, Y.C. and Swailes, T. (2017a), "Reliability based determination of material safety factor for cast iron beams in jack arched construction exposed to standard and natural fires", Fire Saf. J., 90, 44-53, https://doi.org/10.1016/j.firesaf.2017.04.007.
  58. Maraveas, C., Fasoulakis, Z. and Tsavdaridis, K. (2017b), "Fire resistance of axially restrained and partially unprotected Ultra Shallow Floor Beams (USFB®) and DELTABEAM® composite beams", Proceedings of the Applications of Structural Fire Engineering. http://hdl.handle.net/2268/215370.
  59. Maraveas, C., Tsavdaridis, K. and Nadjai, A. (2017c), "Fire resistance of unprotected ultra shallow floor beams (USFB): A numerical investigation", Fire Technol., 53(2), 609-627. https://doi.org/10.1007/s10694-016-0583-5.
  60. Maraveas, C., Swailes, T. and Wang, Y. (2012), "A detailed methodology for the finite element analysis of asymmetric slim floor beams in fire", Steel Constr., 5(3), 191-198. https://doi.org/10.1002/stco.201210024.
  61. Marquardt, D. (1963), "An Algorithm for Least-Squares Estimation of Nonlinear Parameters", J. Soc. Ind. Appl. Mathem., 11, 431-441. https://doi.org/10.1137/0111030.
  62. Memarzadeh, A., Shahmansouri, A.A., Nematzadeh, M. and Gholampour, A. (2021), "A review on fire resistance of steel concrete composite slim floor beams", Steel Compos. Struct., 40(1), 13-32, https://doi.org/10.12989/scs.2021.40.1.013.
  63. Moller, M.F. (1993), "A scaled conjugate gradient algorithm for fast supervised learning", Neural Networks, 6, 525-533. https://doi.org/10.1016/S0893-6080(05)80056-5.
  64. Momeni, E., Armaghani, D.J., Hajihassani, M. and Amin, M.F.M. (2015), "Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks", Measurement, 60, 50-63. https://doi.org/10.1016/j.measurement.2014.09.075.
  65. Ozcan, F., Atis, C. D., Karahan, O., Uncuoglu, E. and Tanyildizi, H. (2009), "Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete", Adv. Eng. Softw., 40(9), 856-863, https://doi.org/10.1016/j.advengsoft.2009.01.005.
  66. Powell, M.J.D. (1977), "Restart procedures for the conjugate gradient method", Mathem. Programming, 12, 241-254. https://doi.org/10.1007/BF01593790.
  67. Psyllaki, P., Stamatiou, K., Iliadis, I., Mourlas, A., Asteris, P. and Vaxevanidis, N. (2018), "Surface treatment of tool steels against galling failure", MATEC Web of Conferences, 188, 04024, https://doi.org/10.1051/matecconf/201818804024.
  68. Raghuwanshi, N.S., Singh, R. and Reddy, L.S. (2006), "Runoff and Sediment Yield Modeling Using Artificial Neural Networks: Upper Siwane River, India", J. Hydrologic Eng., 11, 71-79. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:1(71).
  69. Romero, M.L., Cajot, L.G., Conan, Y. and Braun, M. (2015), "Fire design methods for slim-floor structures", Steel Construct., 8(2), 102-109. https://doi.org/10.1002/stco.201510012.
  70. Romero, M.L., Albero, V., Espinos, A. and Hospitaler, A. (2019), "Fire design of slim-floor beams", Stahlbau, 88(7), 665-674. https://doi.org/10.1002/stab.201900030.
  71. Romero, M.L., Espinos, A., Lapuebla-Ferri, A., Albero, V. and Hospitaler, A. (2020), "Recent developments and fire design provisions for CFST columns and slim-floor beams", J. Constr. Steel Res., 172, 106159. https://doi.org/10.1016/j.jcsr.2020.106159
  72. Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986), "Learning representations by back-propagating errors", Nature, 323, 533-536. https://doi.org/10.1038/323533a0.
  73. Sarir, P., Chen, J., Asteris, P.G., Armaghani, D.J. and Tahir, M.M. (2019), "Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns", Eng. Comput., https://doi.org/10.1007/s00366-019-00808-y.
  74. Taormina, R., Chau, K. and Sethi, R. (2012), "Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon", Eng. Appl. Artif. Intel., 25, 1670-1676. https://doi.org/10.1016/j.engappai.2012.02.009.
  75. Vos de, N.J. and Rientjes, T.H.M. (2008), "Multiobjective training of artificial neural networks for rainfall-runoff modeling", Water Resources Res., 44. https://doi.org/10.1029/2007WR006734.
  76. Walnman, D.E. (1996), Technical Note - Preliminary Assessment of the Data Arising from a Standard Fire Test Performed on a Slimflor Beam at the Warrington Fire Research Centre on 14 Feb 1996, test No. WFRC 66162, British Steel, UK.
  77. Zaharia, R. and Franssen, J.M. (2012), "Simple equations for the calculation of the temperature within the cross-section of slim floor beams under ISO Fire", Steel Compos. Struct., 13(2), 171-185. https://doi.org/10.12989/scs.2012.13.2.171.
  78. Zeng, J., Asteris, P.G., Mamou, A.P., Mohammed, A.S., Golias, E.A., Armaghani, D.J., Faizi, K. and Hasanipanah, M. (2021), "The effectiveness of ensemble-neural network techniques to predict peak uplift resistance of buried pipes in reinforced sand", Appl. Sci., 11, 908. https://doi.org/10.3390/app11030908.
  79. Zeng, J., Roussis, P.C., Mohammed, A.S., Maraveas, C., Fatemi, S.A., Armaghani, D.J. and Asteris, P.G. (2021), "Prediction of peak particle velocity caused by blasting through the combinations of Boosted-CHAID and SVM Models with various kernels", Appl. Sci., 11, 3705. https://doi.org/10.3390/app11083705.
  80. Zhang, H., Nguyen, H., Bui, X. N., Pradhan, B., Asteris, P.G., Costache, R. and Aryal, J. (2021), "A generalized artificial intelligence model for estimating the friction angle of clays in evaluating slope stability using a deep neural network and Harris Hawks optimization algorithm", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-01272-9.