DOI QR코드

DOI QR Code

Development of a Microspot Spectroscopic Ellipsometer Compatible with Atomic Force Microscope

원자힘 현미경 융합형 마이크로스폿 분광타원계 개발

  • Received : 2022.07.13
  • Accepted : 2022.08.10
  • Published : 2022.10.25

Abstract

The previously developed microspot spectroscopic ellipsometer (SE) is upgraded to a microspot SE compatible with the atomic force microscope (AFM). The focusing optical system of the previous microspot SE is optimized to incorporate an AFM head. In addition, the rotating compensator ellipsometer in polarizer-sample-compensator-analyzer configuration is adopted in order to minimize the negative effects caused by beam wobble. This research leads to the derivation of the expressions needed to get spectro-ellipsometric constants despite the fact that the employed rotating compensator is far from the ideal achromatic quarter-wave plate. The spot size of the developed microspot SE is less than 20 ㎛ while the AFM head is mounted. It operates in the wavelength range of 190-850 nm and has a measurement accuracy of δΔ ≤ 0.05° and δΨ ≤ 0.02°, respectively. Fast measurement of ≤3 s/sp is realized by precisely synchronizing the azimuthal angle of a rotating compensator with the spectrograph. The microspot SE integrated with an AFM is expected to be useful in characterizing the structure and optical properties of finely patterned samples.

기존 마이크로스폿 분광타원계의 집속광학계를 개선하여 원자힘 현미경(atomic force microscope, AFM) 헤드를 장착할 수 있도록 한 AFM 융합형 마이크로스폿 분광타원계를 개발하였다. 빔의 워블에 의한 영향을 최소화하기 위해 편광자-시료-보정기-검광자 배치에서 회전보정기 구동방식을 채택하고 이상적인 4분파장 위상지연 특성으로부터 벗어나는 비색성 위상지연자를 사용할 수 있도록 측정이론을 제시하였다. 개발된 마이크로스폿 분광타원계는 AFM 헤드를 장착한 상태에서도 20 ㎛ 이하의 스폿 사이즈를 가지며 190-850 nm의 파장대역에 걸쳐 구동하고 δΔ ≤ 0.05°와 δΨ ≤ 0.02°의 측정정밀도를 가지는 것을 확인하였다. 연속회전하는 스테핑 모터의 속도와 분광계를 정밀하게 동기화시켜 ≤3 s/sp의 빠른 측정속도를 구현하였다. AFM과 융합된 마이크로스폿 분광타원계는 초미세 패턴시료의 구조 및 광학물성 분석에 유용하게 사용될 수 있을 것으로 기대한다.

Keywords

Acknowledgement

AFM 헤드를 장착할 수 있도록 도움을 주신 (주)파크시스템스의 한승호 박사님께 감사드립니다.

References

  1. E. W. Mueller, "Field Emission Microscopy," in Physical Methods in Chemical Analysis, W. G. Berl, Ed. (Academic Press Inc., NY, USA, 1956), Vol. 3, pp. 135-181.
  2. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, 1st ed. (North-Holland Publishing, Amsterdam, Netherlands, 1987).
  3. S. Y. Kim, Ellipsometry (Ajou University, Suwon, Korea, 2000).
  4. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, Japan, 2007).
  5. K. Vedam, P. J. McMarr, and J. Narayan, "Nondestructive depth profiling by spectroscopic ellipsometry," Appl. Phys. Lett. 47, 339-341 (1985). https://doi.org/10.1063/1.96156
  6. J. Narayan, S. Y. Kim, K. Vedam, and R. Manukonda, "Formation and nondestructive characterization of ion implanted silicon-on-insulator layers," Appl. Phys. Lett. 51, 343-345 (1987). https://doi.org/10.1063/1.98435
  7. S. Y. Kim and K. Vedam, "Simultaneous determination of dispersion relation and depth profile of thorium fluoride thin film by spectroscopic ellipsometry," Thin Solid Films 166, 325-334 (1988). https://doi.org/10.1016/0040-6090(88)90394-X
  8. C.-S. Jun, "차세대 반도체 device 개발과 생산을 위한 측정 검사 기술," in Proc. 2019 Next Generation Lithography Conference (Incheon, Korea, Aug. 21-23, 2019).
  9. C. Wang, X. Chen, C. Chen, S. Sheng, L. Song, H. Gu, H. Jiang, C. Zhang, and S. Liu, "Reconstruction of finite deep subwavelength nanostructures by Mueller-matrix scattered-field microscopy," Opt. Express 29, 32158-32168 (2021). https://doi.org/10.1364/OE.432611
  10. S. J. Kim, H. K. Yoon, M. H. Lee, S. J. In, S. Y. Cho, Y. H. Kwon, B. K. Kim, D. H. Bae, J. H. Shin, and S. Y. Kim, "Development and evaluation of micro spot spectroscopic ellipsometer," in Proc. 8th International Conference on Spectroscopic Ellipsometry (Barcelona, Spain, May 26-31, 2019) p. 152.
  11. S. J. Kim, M. H. Lee, and S. Y. Kim, "Development of a microspot spectroscopic ellipsometer using reflective objectives, and the ellipsometric characterization of monolayer MoS2," Curr. Opt. Photonics 4, 353-360 (2020).
  12. S. Y. Kim, "Design of a free-form Mueller matrix ellipsometer with imperfect compensators," Korean J. Opt. Photon. 33, 59-66 (2022).
  13. J. Lee, P. I. Rovira, I. An, and R. W. Collins, "Rotating-compensator multichannel ellipsometry: Applications for real time Stokes vector spectroscopy of thin film growth," Rev. Sci. Instrum. 69, 1800-1810 (1998). https://doi.org/10.1063/1.1148844
  14. I. An, J. A. Zapien, C. Chen, A. S. Ferlauto, A. S. Lawrence, and R. W. Collins, "Calibration and data reduction for a UV-extended rotating-compensator multichannel ellipsometer," Thin Solid Films 455-456, 132-137 (2004). https://doi.org/10.1016/j.tsf.2003.11.221
  15. J. Opsal, J. Fanton, J. Chen, J. Leng, L. Wei, C. Uhrich, M. Senko, C. Zaiser, and D. E. Aspnes, "Broadband spectral operation of a rotating-compensator ellipsometer," Thin Solid Films 313-314, 58-61 (1998). https://doi.org/10.1016/S0040-6090(97)00769-4
  16. T. Mori and D. E. Aspnes, "Comparison of the capabilities of rotating-analyzer and rotating-compensator ellipsometers by measurements on a single system," Thin Solid Films 455-456, 33-38 (2004). https://doi.org/10.1016/j.tsf.2003.12.037
  17. S. Y. Cho, S. J. Kim, M. H. Lee, and S. Y. Kim, "편광자 연속회전 광량측정법과 Incomplete Fourier Transformation을 적용한 실시간 분광타원계의 개발," in Proc. OSK Annual Meeting (Hoengseong, Korea, Feb. 20-22, 2019), paper F1A-II-1.