DOI QR코드

DOI QR Code

Development of two dimensional full wave spectral code for the ICRF heating and current drive research including scrape-off layer in tokamaks

  • Kim, S.H. (Korea Atomic Energy Research Institute) ;
  • Kwak, J.G. (Korea Institute of Fusion Energy)
  • Received : 2021.11.23
  • Accepted : 2022.05.21
  • Published : 2022.10.25

Abstract

It is important for an ICRF full wave code to simulate the SOL (Scrape Off Layer) plasma as well as the core inside of the LCFS (Last Closed Flux Surface) for the precise prediction of the coupling between the antenna and the core plasma in tokamaks. To this end, a two dimensional full wave code based on a Fourier spectral algorithm has been developed. The spectral algorithm and procedures are described and the simulation results for the minority heating in KSTAR are reported including electric field, power absorption and power flux.

Keywords

Acknowledgement

The research was supported by R&D Program (contract number : IN2105-7) of "Development of Key Technology and Management of ITER Project" through the Korea Institute of Fusion Energy(KFE) funded Korea Ministry of Science and ICT.

References

  1. M. Brambilla, Numerical simulation of ion cyclotron waves in tokamak plasmas, Plasma Phys. Contr. Fusion 41 (1998) 1. https://doi.org/10.1088/0741-3335/41/1/002
  2. P.U. Lamalle, On the radiofrequency response of tokamak plasmas, Plasma Phys. Contr. Fusion 39 (1996) 1409. https://doi.org/10.1088/0741-3335/39/9/011
  3. R.J. Dumont, Variational approach to radiofrequency waves in magnetic fusion devices, Nucl. Fusion 49 (2009), 075033. https://doi.org/10.1088/0029-5515/49/7/075033
  4. A. Messiaen, R. Koch, R.R. Weynants, Performance of the ITER ICRH system as expected from TOPICA and ANITER II modeling, Nucl. Fusion 50 (2) (2010),025026. https://doi.org/10.1088/0029-5515/50/2/025026
  5. D. Milanesio, R. Maggiora, ITER ICRF antenna analysis and optimization using the TOPICA code, Nucl. Fusion 46 (2010) S476.
  6. S. Shiraiwa, J.C. Wright, J.P. Lee, P.T. Bonoli, HIS-TORIC : extending core ICRF wave simulation to include realistic SOL plasmas, Nucl. Fusion 57 (2017),086048. https://doi.org/10.1088/1741-4326/aa7b18
  7. E.F. Jaeger, L.A. Berry, E. D'Azevedo, D.B. Batchelor, M.D. Carter, All-orders spectral calculation of radio-frequency heating in two-dimensional toroidal plamsas, Phys. Plasmas 8 (2001) 1573e1583.
  8. Hua-Sheng Xie, One-solve-all treatment, visualizations, and application to Landau damping, Phys. Plasmas 20 (2013), 092125. https://doi.org/10.1063/1.4822332
  9. D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equation, Algorithms for Scientists and Engineers, Springer, 2009.
  10. T.H. Stix, Waves in Plasmas, American Institute of Physics, New York, 1992.
  11. M. Brambilla, Kinetic Theory of Plasma Waves, Clarendon Press, Oxford, 1998.
  12. D.G. Swanson, Plasma Waves, second ed., Insitute of Physics Publishing, Bristol and Philadelphia, 2003.
  13. L.L. Lao, H. St John, R.D. Stambaugh, A.G. Kellman, W. Pfeiffer, Reconstruction of current profile parameters and plasma shapes in tokamaks, Nucl. Fusion 25 (1985) 1611.
  14. H.Y. Lee, J.S. Kang, H.H. Wi, S.J. Wang, J.G. Kwak, K. Saito, Power deposition of H minority heating with a new compact ICRF antenna in KSTAR, J. Kor. Phys. Soc. 78 (2021) 1067e1071.
  15. B.D. Fried, S.D. Conte, The Plasma Dispersion Function the Hilbert Transform of the Gaussian, Academic Press, New York and London, 1961.
  16. S. Wang, S. Huang, Evaluation of the numerical algorithms of the plasma dispersion function, Journal of Quantitative Spectroscopy & Radiative Trnasfer 234 (2019) 64e70.
  17. C.H. Kim, Numerical Analysis and Programming, Kyohaksa, Seoul, 1988.
  18. E. Hewitt, R.E. Hewitt, The Gibbs-Wilbraham phenomenon: an episode in Fourier analysis, Arch. Hist. Exact Sci. 21 (2) (1979) 129e160.
  19. R.V. Bundy, L. Berry, R. Bilato, P. Bonoli, M. Brambilla, R.J. Dumont, A. Fukuyama, R. Harvey, E.F. Jaeger, K. Indireshkumar, Benchmarking ICRF full wave solvers for ITER, Nucl. Fusion 52 (2012), 023023. https://doi.org/10.1088/0029-5515/52/2/023023
  20. W. Zhang, T.Y. Xia, W. Tierens, V. Bobkov, J.-M. Noterdaeme, The ASDEX upgrade team, and the EUROfusion MST1 team, influence of ELMs on ICRF wave scattering, AIP Conf. Proc. 2254 (2020), 050007.
  21. W. Zhang, W. Tierens, V. Bobkov, A. Cathery, I. Cziegler, M. Griener, M. Hoelzl, O. Kardaun, The ASDEX upgrade team, and the EUROfusion MST1 team, interaction between filaments and ICRF in the plasma edge, Nuclear Materials and Energy 26 (2021), 100941. https://doi.org/10.1016/j.nme.2021.100941