Acknowledgement
This research was supported by the National Research Foundation (NRF) grant funded by the Ministry of Science, and ICT of the Korean government (Grant code 2019M2D2A1A03056998).
References
- C.H. Seo, H.C. Kim, H.J. Park, H.T. Chae, Innovative design concepts for the KIJANG research reactor, in: Transactions of the Korean Nuclear Society Spring Meeting, Gwangju, 2013.
- J.J. Jeong, K.S. Ha, B.D. Chung, W.J. Lee, Development of a multi-dimensional thermal-hydraulic system code, MARS 1.3.1, Annals of Nuclear Energy 26 (18) (1999) 1611-1642. https://doi.org/10.1016/S0306-4549(99)00039-0
- D.C. Groeneveld, S.C. Cheng, T. Doan, 1986 AECL-UO critical heat flux lookup table, Heat Transfer Engineering 7 (1-2) (1986) 46-62. https://doi.org/10.1080/01457638608939644
- D.C. Groeneveld, J.Q. Shan, A.Z. Vasic, L.K.H. Leung, A. Durmayaz, J. Yang, S.C. Cheng, A. Tanase, The 2006 CHF look-up table, Nuclear Engineering and Design 237 (15e17) (2007) 1909-1922.
- D.D. Hall, I. Mudawar, Critical heat flux (CHF) for water flow in tubesdII.: subcooled CHF correlations, International Journal of Heat and Mass Transfer 43 (14) (2000) 2605-2640. https://doi.org/10.1016/S0017-9310(99)00192-1
- S. Mirshak, W.S. Durrant, R.H. Towell, Heat Flux at Burnout," Du Pont de Nemours, E.I. & Co. Savannah River Lab., Augusta, Ga., 1959.
- K. Mishima, Boiling Burnout at Low Flow Rate and Low Pressure Conditions, Kyoto University, Kyoto, 1984.
- Y. Sudo, K. Miyata, H. Ikawa, M. Kaminaga, M. Ohkawara, Experimental study of differences in DNB heat flux between upflow and downflow in vertical rectangular channel, Journal of Nuclear Science and Technology 22 (8) (1985) 604-618. https://doi.org/10.1080/18811248.1985.9735705
- Y. Sudo, M. Kaminaga, A new CHF correlation scheme proposed for vertical rectangular channels heated from both sides in nuclear research reactors, Journal of Heat Transfer 115 (2) (1 May 1993) 426-434. https://doi.org/10.1115/1.2910695
- M. Kaminaga, K. Yamamoto, Y. Sudo, Improvement of critical heat flux correlation for research reactors using plate-type fuel, Journal of Nuclear Science and Technology 35 (12) (1998) 943-951. https://doi.org/10.1080/18811248.1998.9733966
- H. Kim, J. Bak, J. Jeong, J. Park, B. Yun, Investigation of the CHF correlation for a narrow rectangular channel under a downward flow condition, International Journal of Heat and Mass Transfer 130 (2019) 60-71. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.073
- H. Kim, J. Kang, T. Ahn, J.J. Jeong, B. Yun, Flow transient critical heat flux in a narrow rectangular channel under downward flow, International Journal of Heat and Mass Transfer 159 (2020).
- L.S. Tong, H.B. Currin, P.S. Larsen, O.G. Smith, Influence of axially nonuniform heat flux on DNB, Chemical engineering progress symposium series 62 (64) (1965) 35-40.
- J. Weisman and B. Pei, "Prediction of critical heat flux in flow boiling at low qualities," International Journal of Heat and Mass Transfer, vol. 26, no. 10, pp. 1463-1477, 18=983. https://doi.org/10.1016/S0017-9310(83)80047-7
- J. Weisman, The current status of theoretically based approaches to the prediction of the critical heat flux in flow boiling, Nuclear Technology 99 (1) (1992) 1-21. https://doi.org/10.13182/NT92-A34699
- J. Galloway, I. Mudawar, CHF mechanism in flow boiling from a short heated wall-I. Examination of near-wall conditions with the aid of photomicrography and high-speed video imaging, International Journal of Heat and Mass Transfer 36 (10) (1993) 2511-2526. https://doi.org/10.1016/S0017-9310(05)80190-5
- C. Lee, I. Mudawwar, A mechanistic critical heat flux model for subcooled flow boiling based on local bulk flow conditions, International Journal of Multiphase Flow 14 (6) (1988) 711-728. https://doi.org/10.1016/0301-9322(88)90070-5
- Y. Katto, A prediction model of subcooled water flow boiling CHF for pressure in the range 0.1-20 MPa, International Journal of Heat and Mass Transfer 35 (5) (1992) 1115-1123. https://doi.org/10.1016/0017-9310(92)90172-O
- G. Celata, M. Cumo, A. Mariani, Assessment of correlations and models for the prediction of CHF in water subcooled flow boiling, International Journal of Heat and Mass Transfer 37 (2) (1994) 237-255. https://doi.org/10.1016/0017-9310(94)90096-5
- D.C. Groeneveld, On the definition of critical heat flux margin, Nuclear Engineering and Design 163 (1-2) (1996) 245-247. https://doi.org/10.1016/0029-5493(95)01173-0
- The RELAP5-3D© Code Development Team, RELAP5-3D Code Manual Volume I: Code Structure, System Models and Solution Methods, Idaho National Laboratory, Idaho Falls, 2005.
- KAERI, MARS Code Manual Volume I: Code Structure, System Models, and Solution Methods, Korea Atomic Energy Research Institute, 2007.
- S.J. Ha, C.E. Park, K.D. Kim, C.H. Ban, Development of the SPACE code for nuclear power plants, Nuclear Engineering and Technology 43 (1) (2011) 45-62. https://doi.org/10.5516/NET.2011.43.1.045
- W.R. Gambill, R.D. Bundy, HFIR Heat-Transfer Studies of Turbulent Water Flow in Thin Rectangular Channels, Oak Ridge National Laboratory, 1961.
- E. Ishibashi, K. Nishikawa, Saturated boiling heat transfer in narrow spaces, International Journal of Heat and Mass Transfer 12 (8) (1969) 863-893. https://doi.org/10.1016/0017-9310(69)90153-7
- E.L. Crow, F.A. Davis, M.W. Maxfield, Statistics Manual, Dover Publications, 1960.