References
- Abdelsalam, M., Diab, H.Y. and El-Bary, A.A. (2021), "A metaheuristic harris hawk optimization approach for coordinated control of energy management in distributed generation based microgrids", Appl. Sci., 11(9), 4085. https://doi.org/10.3390/app11094085.
- Abellan-Garcia, J. andGuzman-Guzman, J.S. (2021), "Random forest-based optimization of UHPFRC under ductility requirements for seismic retrofitting applications", Constr. Build. Mater., 285, 122869. https://doi.org/10.1016/j.conbuildmat.2021.122869.
- Abu-Farsakh, M.Y. and Mojumder, M.A.H. (2020), "Exploring artificial neural network to evaluate the undrained shear strength of soil from cone penetration test data", T. Res. Record, 2674(4), 11-22. https://doi.org/10.1177/0361198120912426.
- Archer, K.J. and Kimes, R.V. (2008), "Empirical characterization of random forest variable importance measures", Comput. Stat. Data Anal., 52(4), 2249-2260. https://doi.org/10.1016/j.csda.2007.08.015.
- Asadi, S., Roshan, S. and Kattan, M.W. (2021), "Random forest swarm optimization-based for heart diseases diagnosis", J. Biomed. Inform., 115, 103690. https://doi.org/10.1016/j.jbi.2021.103690.
- ASTM D2850-03. (2017), "Standard test method for unconsolidated-undrained triaxial compression test on cohesive soils", https://doi.org/10.1520/D2850-03.
- ASTM D3441-16. (2018), "Standard test method for mechanical cone penetration testing of soils", https://doi.org/10.1520/D3441-16.
- ASTM D422-63. (2017), "Standard test method for particle-size analysis of soils", https://doi.org/10.1520/D0422-63R98.
- ASTM D4318-00. (2017), "Standard test methods for liquid limit, plastic limit, and plasticity index of soils", https://doi.org/10.1520/D4318-00.
- ASTM D4643-17. (2017), "Standard test method for determination of water content of soil and rock by microwave oven heating", https://doi.org/10.1520/D4643-17.
- ASTM D7263-21. (2021), "Standard test methods for laboratory determination of density and unit weight of soil specimens", https://doi.org/10.1520/D7263-21.
- Axelsson, G. (1998), "Long-term set-up of driven piles in non-cohesive soils evaluated from dynamic tests on penetration rods", Geotech. Site Character., 895-900.
- Benemaran, R.S. and Esmaeili-Falak, M. (2020), "Optimization of cost and mechanical properties of concrete with admixtures using MARS and PSO", Comput. Concrete, 26(4), 309-316. https://doi.org/10.12989/cac.2020.26.4.309.
- Bergahl, U. (1981), "Load tests on friction piles in clay", Proceedings of the 10th Int. Conf. on SMFE.
- Biau, G., Devroye, L. and Lugosi, G. (2008), "Consistency of random forests and other averaging classifiers", J. Machine Learning Res.h, 9(9).
- Bond, A.J. and Jardine, R.J. (1991), "Effects of installing displacement piles in a high OCR clay," Geotechnique, 41(3), 341-363. https://doi.org/10.1680/geot.1991.41.3.341.
- Breiman, L. (2001), "Random forests", Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324.
- Bullock, Paul J. (2008), "The easy button for driven pile setup: dynamic testing", From Research to Practice in Geotechnical Engineering, 471-488.
- Bullock, Paul Joseph. (1999), "Pile friction freeze: A field and laboratory study," University of Florida.
- Camp III, W.M. and Parmar, H.S. (1999), "Characterization of pile capacity with time in the Cooper Marl: study of applicability of a past approach to predict long-term pile capacity", T. Res. Record, 1663(1), 16-24. https://doi.org/10.3141/1663-0.
- Chen, W., Wang, Y., Cao, G., Chen, G. and Gu, Q. (2014), "A random forest model based classification scheme for neonatal amplitude-integrated EEG", Biomed. Eng. Online, 13(2), 1-13. https://doi.org/10.1186/1475-925X-13-S2-S4.
- Chow, F.C., Jardine, R.J., Brucy, F. and Nauroy, J.F. (1998), "Effects of time on capacity of pipe piles in dense marine sand", J. Geotech. Geoenviron. Eng., 124(3), 254-264. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:3(254).
- Elias, M.B. (2008), "Numerical simulation of pile installation and setup", 70(1).
- Esmaeili-Falak, M. (2013), "Two-dimensional finite element analysis of influence of plasticity on the seismic soil-micropiles-structure interaction", Tech. J. Eng. Appl. Sci., 3(13), 1301-1305.
- Esmaeili-Falak, M, Katebi, H. and Javadi, A.A. (2018), "Experimental study of the mechanical behavior of frozen soils - a case study of Tabriz subway", Periodica Polytechnica Civil Eng., 62(1), 117-125. https://doi.org/10.3311/PPci.10960.
- Esmaeili-Falak, M., Katebi, H. and Javadi, A.A. (2020), "Effect of freezing on stress-strain characteristics of granular and cohesive soils", J. Cold Regions Eng., 34(2), 05020001. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000205.
- Esmaeili-Falak, Mahzad, Katebi, H., Vadiati, M. and Adamowski, J. (2019), "Predicting triaxial compressive strength and Young's modulus of frozen sand using artificial intelligence methods", J. Cold Regions Eng., 33(3), 4019007. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000188.
- Esmaeili Falak, M. and Sarkhani Benemaran, R. (2022), "Investigating the stress-strain behavior of frozen clay using triaxial test", J. Struct. Constr. Eng.. https://doi.org/10.22065/JSCE.2022.332406.2747.
- Ge, D.M., Zhao, L.C. and Esmaeili-Falak, M. (2022), "Estimation of rapid chloride permeability of SCC using hyperparameters optimized random forest models", J. Sustain. Cement-Based Mater., 1-19. https://doi.org/10.1080/21650373.2022.2093291.
- Guang-Yu, Z. (1988), "Wave equation applications for piles in soft ground", Proceedings of the 3rd International Conference on the Application of Stress-Wave Theory to Piles. Canada: Ottawa.
- Hammerstrom, D. (1993), "Neural networks at work", IEEE Spectrum, 30(6), 26-32. https://doi.org/10.1109/6.214579
- Haque, M.N., Abu-Farsakh, M.Y., Chen, Q. and Zhang, Z. (2014), "Case study on instrumenting and testing full-scale test piles for evaluating setup phenomenon", T. Res.Record, 2462(1), 37-47. https://doi.org/10.3141/2462-05.
- Haque, M.N. (2015), "Field instrumentation and testing to study set-up phenomenon of driven piles and its implementation in LRFD design methodology."
- Hoang, N.D., Chen, C.T. and Liao, K.W. (2017), "Prediction of chloride diffusion in cement mortar using multi-gene genetic programming and multivariate adaptive regression splines", Measurement, 112, 141-149. https://doi.org/10.1016/j.measurement.2017.08.031.
- Hong, H., Pourghasemi, H.R. and Pourtaghi, Z.S. (2016), "Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models", Geomorphology, 259, 105-118. https://doi.org/10.1016/j.geomorph.2016.02.012.
- Huo, W., Li, W., Zhang, Z., Sun, C., Zhou, F. and Gong, G. (2021), "Performance prediction of proton-exchange membrane fuel cell based on convolutional neural network and random forest feature selection", Energ. Convers. Manag., 243, 114367. https://doi.org/10.1016/j.enconman.2021.114367.
- Iqbal, M., Zhang, D. and Jalal, F.E. (2021), "Durability evaluation of GFRP rebars in harsh alkaline environment using optimized tree-based random forest model", J. Ocean Eng. Sci., https://doi.org/10.1016/j.joes.2021.10.012.
- Johari, A, Habibagahi, G. and Ghahramani, A. (2011), "Prediction of SWCC using artificial intelligent systems: A comparative study", Scientia Iranica, 18(5), 1002-1008. https://doi.org/10.1016/j.scient.2011.09.002.
- Johari, A, Javadi, A.A. and Habibagahi, G. (2011), "Modelling the mechanical behaviour of unsaturated soils using a genetic algorithm-based neural network", Comput. Geotech., 38(1), 2-13. https://doi.org/10.1016/j.compgeo.2010.08.011.
- Johari, Ali, Javadi, A.A. and Najafi, H. (2016), "A genetic-based model to predict maximum lateral displacement of retaining wall in granular soil", Scientia Iranica, 23(1), 54-65. https://doi.org/10.24200/SCI.2016.2097.
- Khan, M.M., Ahmad, A.M., Khan, G.M. and Miller, J.F. (2013), "Fast learning neural networks using cartesian genetic programming", Neurocomput., 121, 274-289. https://doi.org/10.1016/j.neucom.2013.04.005.
- Komurka, V.E., Wagner, A.B. and Edil, T.B. (2003), Estimating soil/pile set-up. Citeseer.
- Lee, J., Prezzi, M. and Salgado, R. (2011), "Experimental investigation of the combined load response of model piles driven in sand", Geotech. Test. J., 34(6), 653-667. https://doi.org/10.1520/GTJ103269.
- Lee, W., Kim, D., Salgado, R. andZaheer, M. (2010), "Setup of driven piles in layered soil", Soils Found., 50(5), 585-598. https://doi.org/10.3208/sandf.50.585.
- Liaw, A. and Wiener, M. (2002), "Classification and regression by random forest", R News, 2(3), 18-22.
- Liu, J., Jiang, Y., Zhang, Y. and Sakaguchi, O. (2021), "Influence of different combinations of measurement while drilling parameters by artificial neural network on estimation of tunnel support patterns", Geomech. Eng., 25(6), 439-453. https://doi.org/10.12989/gae.2021.25.6.439.
- Looney, C.G. (1996), "Advances in feedforward neural networks: demystifying knowledge acquiring black boxes", IEEE T. Knowledge Data Eng., 8(2), 211-226. https://doi.org/10.1109/69.494162
- Luat, N.V., Lee, K. and Thai, D.K. (2020), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils", Geomech. Eng., 20(5), 385-397. https://doi.org/10.12989/gae.2020.20.5.385.
- Mafarja, M., Aljarah, I., Heidari, A.A., Hammouri, A.I., Faris, H., Ala'M, A.Z. and Mirjalili, S. (2018), "Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems", Knowledge-Based Syst., 145, 25-45. https://doi.org/10.1016/j.knosys.2017.12.037.
- Maghsoodi, V., Atermoghaddam, F. and Esmaeili-Falak, M. (2013), "Parametric and two dimensional study of seismic behavior of micro pile group in sandy soil", Intl. Res. J. Appl. Basic. Sci., 6(7), 901-909.
- McVay, M.C., Schmertmann, J., Townsend, F. and Bullock, P. (1999), "Pile friction freeze: a field investigation study", Research Report No. WPI 0510632.
- Mirjalili, S.Z., Mirjalili, S., Saremi, S., Faris, H. and Aljarah, I. (2018), "Grasshopper optimization algorithm for multi-objective optimization problems", Appl. Intell., 48(4), 805-820. https://doi.org/10.1007/s10489-017-1019-8.
- Mohammad, L.N., Raghavendra, A., Medeiros, M., Hassan, M. and King, W. "Bill" (2018), "Louisiana transportation research center", Louisiana State University, 70808(225), http://www.ltrc.lsu.edu/downloads.html.
- Mojumder, M.A.H. (2020), "Evaluation of undrained shear strength of soil, ultimate pile capacity and pile set-up parameter from Cone Penetration Test (CPT) using Artificial Neural Network (ANN)", LSU Master's Theses. 5145. https://digitalcommons.lsu.edu/gradschool_theses/5145.
- Ng, K.W., Suleiman, M.T. and Sritharan, S. (2013), "Pile setup in cohesive soil. II: Analytical quantifications and design recommendations", J. Geotech. Geoenviron. Eng., 139(2), 210-222. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000753.
- Nhu, V.H., Hoang, N.D., Duong, V.B., Vu, H.D. and Bui, D.T. (2020), "A hybrid computational intelligence approach for predicting soil shear strength for urban housing construction: a case study at Vinhomes Imperia project, Hai Phong city (Vietnam)", Eng. with Comput., 36(2), 603-616. https://doi.org/10.1007/s00366-019-00718-z.
- Paikowsky, S.G., Regan, J.E. and McDonnell, J.J. (1994), A simplified field method for capacity evaluation of driven piles final report.
- Poorjafar, A., Esmaeili-Falak, M. and Katebi, H. (2021), "Pile-soil interaction determined by laterally loaded fixed head pile group", Geomech. Eng., 26(1), 13-25. https://doi.org/10.12989/gae.2021.26.1.013.
- Qi, C., Chen, Q., Fourie, A. and Zhang, Q. (2018), "An intelligent modelling framework for mechanical properties of cemented paste backfill", Miner. Eng., 123, 16-27. https://doi.org/10.1016/j.mineng.2018.04.010.
- Richardson, B.D. (2011), "A case study on pile relaxation in dilative silts," University of Rhode Island".
- Saremi, S., Mirjalili, S. and Lewis, A. (2017), "Grasshopper optimisation algorithm: theory and application", Adv. Eng. Softw., 105, 30-47. https://doi.org/10.1016/j.advengsoft.2017.01.004.
- Sarkhani Benemaran, R., Esmaeili-Falak, M. and Javadi, A. (2022), "Predicting resilient modulus of flexible pavement foundation using extreme gradient boosting based optimised models", Int. J. Pavement Eng. 1-20. https://doi.org/10.1080/10298436.2022.2095385.
- Sarkhani Benemaran, R., Esmaeili-Falak, M. and Katebi, H. (2020), "Physical and numerical modelling of pile-stabilized saturated layered slopes", Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 1-50. https://doi.org/10.1680/jgeen.20.00152.
- Schmertmann, J.H. (1991), "The mechanical aging of soils", J. Geotech. Eng., 117(9), 1288-1330. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:9(1288)
- Shahin, M.A., Maier, H.R. and Jaksa, M.B. (2004), "Data division for developing neural networks applied to geotechnical engineering", J. Comput. Civil Eng., 18(2), 105-114. https://doi.org/10.1061/(ASCE)0887-3801(2004)18:2(105)
- Shozib, I.A., Ahmad, A., Rahaman, M.S.A., majdi Abdul-Rani, A., Alam, M.A., Beheshti, M. and Taufiqurrahman, I. (2021), "Modelling and optimization of microhardness of electroless Ni-P-TiO2 composite coating based on machine learning approaches and RSM", J. Mater. Res. Technol., 12, 1010-1025. https://doi.org/10.1016/j.jmrt.2021.03.063.
- Singh, G., Singh, B. and Kaur, M. (2019), "Grasshopper optimization algorithm-based approach for the optimization of ensemble classifier and feature selection to classify epileptic EEG signals", Med. Biol. Eng. Comput., 57(6), 1323-1339. https://doi.org/10.1007/s11517-019-01951-w.
- Skov, R. and Denver, H. (1988), "Time-Dependence of bearing capacity of piles", Proceedings of the 3rd Int. Conf. App. Stress-Wave Theory to Piles.
- Skov, R. and Denver, H. (1988), "Time-dependence of bearing capacity of piles", Proceedings of the 3rd International Conference on the Application of Stress-Wave Theory to Piles. Ottawa.
- Steward, E.J. and Wang, X. (2011), "Predicting pile setup (freeze): a new approach considering soil aging and pore pressure dissipation", In Geo-Frontiers 2011: Advances in Geotechnical Engineering.
- Stone, M. (1974), "Cross-validatory choice and assessment of statistical predictions", J. Roy. Stat. Soc.: Series B (Methodological), 36(2), 111-133. https://doi.org/10.1111/j.2517-6161.1974.tb00994.x.
- Stumpf, A. and Kerle, N. (2011), "Object-oriented mapping of landslides using random forests", Remote Sens. Environ., 115(10), 2564-2577. https://doi.org/10.1016/j.rse.2011.05.013.
- Sun, D., Shi, S., Wen, H., Xu, J., Zhou, X. and Wu, J. (2021), "A hybrid optimization method of factor screening predicated on GeoDetector and random forest for landslide susceptibility mapping," Geomorphology, 379, 107623. https://doi.org/10.1016/j.geomorph.2021.107623.
- Sun, D., Wen, H., Wang, D. and Xu, J. (2020), "A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm", Geomorphology, 362, 107201. https://doi.org/10.1016/j.geomorph.2020.107201.
- Sun, D., Xu, J., Wen, H. and Wang, D. (2021), "Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: A comparison between logistic regression and random forest", Eng. Geol., 281, 105972. https://doi.org/10.1016/j.enggeo.2020.105972.
- Svinkin, M.R., Morgano, C.M. and Morvant, M. (1994), "Pile capacity as a function of time in clayey and sandy soils", Proceedings of the Deep Foundations Institute Fifth International Conference and Exhibition on Piling and Deep Foundations, 1.
- Talaat, M., Hatata, A.Y., Alsayyari, A.S. and Alblawi, A. (2020), "A smart load management system based on the grasshopper optimization algorithm using the under-frequency load shedding approach", Energy, 190, 116423. https://doi.org/10.1016/j.energy.2019.116423.
- Topaz, C.M., Bernoff, A.J., Logan, S. and Toolson, W. (2008), "A model for rolling swarms of locusts", Eur. Phys. J. Spec. Topics, 157(1), 93-109. https://doi.org/10.1140/epjst/e2008-00633-y.
- Trigila, A., Iadanza, C., Esposito, C. andScarascia-Mugnozza, G. (2015), "Comparison of logistic regression and random forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy)", Geomorphology, 249, 119-136. https://doi.org/10.1016/j.geomorph.2015.06.001.
- Wang, J., Fa, Y., Tian, Y. and Yu, X. (2021), "A machine-learning approach to predict creep properties of Cr-Mo steel with time-temperature parameters", J. Mater. Res. Technol., 13, 635-650. https://doi.org/10.1016/j.jmrt.2021.04.079.
- Wang, S.T. and Reese, L.C. (1989), "Predictions of response of piles to axial loading", Predicted and Observed Axial Behavior of Piles: Results of a Pile Prediction Symposium, 173-187.
- Xiang, G., Yin, D., Cao, C. and Yuan, L. (2021), "Application of artificial neural network for prediction of flow ability of soft soil subjected to vibrations", Geomech. Eng., 25(5), 395-403. https://doi.org/10.12989/gae.2021.25.5.395.
- Yang, C., Feng, H. and Esmaeili-Falak, M. (2022), "Predicting the compressive strength of modified recycled aggregate concrete", Structural Concrete.
- Yuan, J., Zhao, M. and Esmaeili-Falak, M. (2022), "A comparative study on predicting the rapid chloride permeability of self-compacting concrete using meta-heuristic algorithm and artificial intelligence techniques", Struct. Concrete, 23(2), 753-774. https://doi.org/10.1002/suco.202100682.
- Zakariazadeh, A. (2022), "Smart meter data classification using optimized random forest algorithm", ISA Transactions, 126, 361-369. https://doi.org/10.1016/j.isatra.2021.07.051.
- Zhang, P., Yin, Z.Y., Jin, Y.F. and Chan, T.H.T. (2020), "A novel hybrid surrogate intelligent model for creep index prediction based on particle swarm optimization and random forest", Eng. Geol., 265, 105328. https://doi.org/10.1016/j.enggeo.2019.105328.
- Zhou, X., Wen, H., Zhang, Y., Xu, J. and Zhang, W. (2021), "Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization", Geosci. Front., 12(5), 101211. https://doi.org/10.1016/j.gsf.2021.101211.
- Zhu, W., Huang, L., Mao, L. and Esmaeili-Falak, M. (2022), "Predicting the uniaxial compressive strength of oil palm shell lightweight aggregate concrete using artificial intelligence-based algorithms", Struct. Concrete, https://doi.org/10.1002/suco.202100656