DOI QR코드

DOI QR Code

Effect of Extract of Acanthopanax Senticosus Fruit on Breast Cancer Cells

가시오가피 열매 추출물이 유방암 세포주에 미치는 영향

  • 황종현 (가천대학교 한의과대학) ;
  • 김승만 (가천대학교 한의과대학) ;
  • 황귀서 (가천대학교 한의과대학) ;
  • 전찬용 (가천대학교 한의과대학) ;
  • 강기성 (가천대학교 한의과대학)
  • Received : 2022.07.18
  • Accepted : 2022.09.29
  • Published : 2022.09.30

Abstract

Objectives: Acanthopanax senticosus is a tree used in traditional medicine for various diseases. In this study, we investigated the anti-cancer effects of a water extract of Acanthopanax senticocus fruit (ASF) on 2 human breast cancer cell lines (MCF-7 and MDA-MB-231). Methods: The MTT assay was used to assess cell proliferation. The expression of apoptosis-related genes was assessed by quantitative real-time PCR. Results: ASF treatment caused a dose-dependent inhibition of cell growth in both estrogen-independent MDA-MB-231 and estrogen-dependent MCF-7 breast cancer cells. ASF decreased mRNA expression of the apoptotic suppressor gene Bcl-xL, and increased mRNA expression of proapoptotic genes. ASF increased the mRNA expression of p21 and RIP-1 in both cell types. ASF decreased the mRNA expression of survivin in the MCF-7 cell line. Conclusions: ASF exhibits anti-cancer activity involving apoptotic cell death.

Keywords

References

  1. Ataollahi MR, Sharifi J, Paknahad MR, Paknahad A. Breast cancer and associated factors: a review. J Med Life 2015;8(Spec Iss 4):6-11.
  2. Chen JQ, Russo J. ERα-Negative and Triple Negative Breast Cancer: Molecular Features and Potential Therapeutic Approaches. Biochim Biophys Acta 2009;1796(2):162-75.
  3. Johnston SR. Endocrinology and hormone therapy in breast cancer: selective oestrogen receptor modulators and downregulators for breast cancer. Breast Cancer Res 2005;7(3):119-30. https://doi.org/10.1186/bcr1023
  4. Watanabe S, Yonesaka K, Tanizaki J, Nonagase Y, Takegawa N, Haratani K, et al. Targeting of the HER2/HER3 signaling axis overcomes ligand-mediated resistance to trastuzumab in HER2-positive breast cancer. Cancer Med 2019;8(3):1258-68. https://doi.org/10.1002/cam4.1995
  5. Vagia E, Mahalingam D, Cristofanilli M. The Landscape of Targeted Therapies in TNBC. Cancers(Basel) 2020;12(4):916.
  6. Imran M, Rauf A, Abu-Izneid T, Nadeem M, Shariati MA, Khan IA, et al. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed Pharmacother 2019;112:108612. https://doi.org/10.1016/j.biopha.2019.108612
  7. Sudhakaran M, Sardesai S, Doseff AI. Flavonoids: New Frontier for Immuno-Regulation and Breast Cancer Control. Antioxidants (Basel) 2019;8(4):103. https://doi.org/10.3390/antiox8040103
  8. Dandawate PR, Subramaniam D, Jensen RA, Anant S. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy. Semin Cancer Biol 2016;40-41:192-208. https://doi.org/10.1016/j.semcancer.2016.09.001
  9. Jeong YS, You DE, Kang HG, Yu JH, Kim SW, Nam SJ, et al. Berberine Suppresses Fibronectin Expression through Inhibition of c-Jun Phosphorylation in Breast Cancer Cells. J Breast Cancer 2018;21(1):21-7. https://doi.org/10.4048/jbc.2018.21.1.21
  10. Ko EY, Moon A. Natural Products for Chemoprevention of Breast Cancer. J Cancer Prev 2015;20(4):223-31. https://doi.org/10.15430/JCP.2015.20.4.223
  11. Kim SY, Lee DY, Seo KH, Rho YD, Kim GW, Baek NI. Isolation and Identification of Lipids from the Fruits of Acanthopanax sessiliflorus. J Appl Biol Chem 2012;55(2):103-7. https://doi.org/10.3839/jabc.2011.066
  12. 본초학편집위원회. 본초학. 서울: 영림사; 2005.
  13. Huang L, Zhao H, Huang B, Zheng C, Peng W, Qin L. Acanthopanax senticosus: review of botany, chemistry and pharmacology. Pharmazie 2011;66(2):83-97.
  14. Thamizhiniyan V, Choi YW, Kim YK. The cytotoxic nature of Acanthopanax sessiliflorus stem bark extracts in human breast cancer cells. Saudi J Biol Sci 2015;22(6):752-9. https://doi.org/10.1016/j.sjbs.2015.04.004
  15. Lee SJ, Hong S, Yoo SH, Kim GW. Cyanidin -3-O-sambubioside from Acanthopanax sessiliflorus fruit inhibits metastasis by downregulating MMP-9 in breast cancer cells MDA-MB-231. Planta Med 2013;79(17):1636-40. https://doi.org/10.1055/s-0033-1350954
  16. Yan Z, Liu J, Lu D, Narlawar R, Groundwater P, Li P. Two new ceramides from the fruit pulp of Acanthopanax senticosus (Rupr. et Maxim) Harms. Nat Prod Res 2014;28(3):144-9. https://doi.org/10.1080/14786419.2013.856908
  17. Jun YY, Cui CB, Lee HJ, Moon SY, Lee DS, Ham SS. Antimutagenic and Cytotoxicity Effects of Extracts of Eleutherococcus senticosus Maxim fruits. Korean J Food Preserv 2003;10(3):394-400.
  18. Saito T, Nishida M, Saito M, Tanabe A, Eitsuka T, Yuan SH, et al. The fruit of Acanthopanax senticosus (Rupr. et Maxim.) Harms improves insulin resistance and hepatic lipid accumulation by modulation of liver adenosine monophosphate-activated protein kinase activity and lipogenic gene expression in high-fat diet-fed obese mice. Nutr Res 2016; 36(10):1090-7. https://doi.org/10.1016/j.nutres.2016.09.004
  19. Oh EK, Kim YJ, Park SY, Lim YN, Shin JY, Kim JY, et al. The fruit of Acanthopanax senticosus Harms improves arterial stiffness and blood pressure: a randomized, placebocontrolled trial. Nutr Res Pract 2020;14(4):322-33. https://doi.org/10.4162/nrp.2020.14.4.322
  20. Zhang ML, Sun YP, Liu Y, Pan J, Guan W, Li XM, et al. Five new sesquiterpenoids from the fruits of Acanthopanax senticosus (Rupr. & Maxim.) Harms. Fitoterapia 2021;149:104827. https://doi.org/10.1016/j.fitote.2021.104827
  21. Seol JY, Youn YN, Koo M, Kim HJ, Choi SY. Influence of water-soluble extracts of long-term fermented doenjang on bone metabolism bioactivity and breast cancer suppression. Food Sci Biotechnol 2016;25(2):517-24. https://doi.org/10.1007/s10068-016-0072-0
  22. Chen J, Duan Y, Zhang X, Ye Y, Ge B, Chen J. Genistein induces apoptosis by the inactivation of the IGF-1R/p-Akt signaling pathway in MCF-7 human breast cancer cells. Food Funct 2015;6(3):995-1000. https://doi.org/10.1039/C4FO01141D
  23. Lee JH, Lee HJ. A daidzein metabolite, 6,7,40 -trihydroxyisoflavone inhibits cellular proliferation through cell cycle arrest and apoptosis induction in MCF10CA1a human breast cancer cells. J Korean Soc Appl Biol Chem 2013;56:695-700. https://doi.org/10.1007/s13765-013-3164-z
  24. Li Y, Zhang JJ, Xu DP, Zhou T, Zhou Y, Li S, et al. Bioactivities and health benefits of wild fruits. Int J Mol Sci 2016;17(8):1258. https://doi.org/10.3390/ijms17081258
  25. Shirode AB, Kovvuru P, Chittur SV, Henning SM, Heber D, Reliene R. Antiproliferative effects of pomegranate extract in MCF-7 breast cancer cells are associated with reduced DNA repair gene expression and induction of double strand breaks. Mol Carcinog 2014;53(6):458-70. https://doi.org/10.1002/mc.21995
  26. Jo EH, Kim SH, Ahn NS, Park JS, Hwang JW, Lee YS, et al. Efficacy of sulforaphane is mediated by p38 MAP kinase and caspase-7 activations in ER-positive and COX-2-expressed human breast cancer cells. Eur J Cancer Prev 2007;16(6):505-10. https://doi.org/10.1097/01.cej.0000243856.97479.3b
  27. Kim SH, Sehrawat A, Singh SV. Dietary chemopreventative benzyl isothiocyanate inhibits breast cancer stem cells in vitro and in vivo. Cancer Prev Res 2013;6(8):782-90. https://doi.org/10.1158/1940-6207.CAPR-13-0100
  28. Hahm ER, Singh SV. Bim contributes to phenethyl isothiocyanate-induced apoptosis in breast cancer cells. Mol Carcinog 2012;51(6):465-74. https://doi.org/10.1002/mc.20811
  29. Lee CG, Lee HW, Kim BO, Rhee DK, Pyo S. Allicin inhibits invasion and migration of breast cancer cells through the suppression of VCAM-1: Regulation of association between p65 and ER-alpha. J Funct Foods 2015;15:172-85. https://doi.org/10.1016/j.jff.2015.03.017
  30. Lee D, Lee WY, Jung K, Kwon YS, Kim D, Hwang GS, et al. The Inhibitory Effect of Cordycepin on the Proliferation of MCF-7 Breast Cancer Cells, and its Mechanism: An Investigation Using Network Pharmacology-Based Analysis. Biomolecules 2019;9(9):407. https://doi.org/10.3390/biom9090407
  31. Zhang YS, Shen Q, Li J. Traditional Chinese medicine targeting apoptotic mechanisms for esophageal cancer therapy. Acta Pharmacologica Sinica 2016;37(3):295-302. https://doi.org/10.1038/aps.2015.116
  32. Qadir AS, Stults AM, Murmann AE, Peter ME. The mechanism of how CD95/Fas activates the Type I IFN/STAT1 axis, driving cancer stemness in breast cancer. Sci Rep 2020;10(1):1310. https://doi.org/10.1038/s41598-020-58211-3
  33. Stegh AH, Barnhart BC, Volkland J, AlgecirasSchimnich A, Ke N, Reed JC, et al. Inactivation of caspase-8 on mitochondria of Bcl-xL-expressing MCF7-Fas cells: role for the bifunctional apoptosis regulator protein. J Biol Chem 2002;277(6):4351-60. https://doi.org/10.1074/jbc.M108947200
  34. Xue M, Ge Y, Yu C, Zheng Z, He X, Zhao J. Apoptosis is induced by docosahexaenoic acid in breast cancer cells via death receptor and mitochondria-mediated pathways. Mol Med Rep 2017;16(1):978-82. https://doi.org/10.3892/mmr.2017.6678
  35. Praveenkumar E, Gurrapu N, Kolluri PK, Shivaraj, Subhashini NJP, Dokala A. Selective CDK4/6 inhibition of novel 1,2,3-triazole tethered acridinedione derivatives induces G1/S cell cycle transition arrest via Rb phosphorylation blockade in breast cancer models. Bioorg Chem 2021;116:105377. https://doi.org/10.1016/j.bioorg.2021.105377
  36. Du J, Sun Y, Lu YY, Lau E, Zhao M, Zhou QM, et al. Berberine and Evodiamine Act Synergistically Against Human Breast Cancer MCF-7 Cells by Inducing Cell Cycle Arrest and Apoptosis. Anticancer Res 2017;37(11):6141-51.
  37. Mita AC, Mita MM, Nawrocki ST, Giles FJ. Survivin: Key Regulator of Mitosis and Apoptosis and Novel Target for Cancer Therapeutics. Clin Cancer Res 2008;14(16):5000-5. https://doi.org/10.1158/1078-0432.CCR-08-0746
  38. Zhang J, Zhang H, Li J, Rosenberg S, Zhang EC, Zhou X, et al. RIP1-mediated regulation of lymphocyte survival and death responses. Immunol Res 2011;51(2-3):227-36. https://doi.org/10.1007/s12026-011-8249-3