DOI QR코드

DOI QR Code

텍스트 마이닝을 활용한 캡스톤 디자인에 관한 학생 인식 탐색: 산업경영공학 사례

A Text Mining Analysis on Students' Perceptions about Capstone Design: Case of Industrial & Management Engineering

  • 위광호 (한국외국어대학교 산업경영공학과) ;
  • 김윤진 (한국외국어대학교 산업경영공학과) ;
  • 김문수 (한국외국어대학교 산업경영공학과)
  • Wi, Gwang-Ho (Department of Industrial Management and Engineering, Hankuk University of Foreign Studies) ;
  • Kim, Yun-jin (Department of Industrial Management and Engineering, Hankuk University of Foreign Studies) ;
  • Kim, Moon-Soo (Department of Industrial Management and Engineering, Hankuk University of Foreign Studies)
  • 투고 : 2022.08.05
  • 심사 : 2022.08.30
  • 발행 : 2022.09.30

초록

Capstone Design, a project-based learning technique, is the most important curriculum that clarifying major knowledge and cultivating the ability to apply through the process of solving problems in the industrial field centered on the student project team. Accordingly, various and extensive studies are being conducted for the successful implementation of capstone design courses. Unlike previous studies, this study aimed to quantitatively analyze the opinions that recorded the experiences and feelings of students who performed capstone design, and used text mining methodologies such as frequency analysis, correlation analysis, topic modeling, and sentiment analysis. As a result of examining the overall opinions of the latter period through frequency analysis and correlation analysis, there was a difference between the languages used by the students in the opinions according to gender and project results. Through topic modeling analysis, 'topic selection' and 'the relationship between team members' showed an increase in occupancy or high occupancy, and topics such as 'presentation', 'leadership', and 'feeling what they felt' showed a tendency to decreasing occupancy. Lastly, sentiment analysis has found that female students showed more neutral emotions than male students, and the passed group showed more negative emotions than the non-passed group and less neutral emotions. Based on these findings, students' practical recognition of the curriculum was considered and implications for the improvement of capstone design were presented.

키워드

과제정보

이 논문은 대한민국 과학기술정보통신부와 한국연구재단의 연구지원사업(NRF-2017R1A2B4005858, NRF-2020S1A5A2A 03042307)과 2022학년도 한국외국어대학교 교원연구 지원사업에 의하여 이루어진 것임. 본 논문은 2021년 한국교육학회 연차학술대회에서 발표한 논문을 수정, 보완하여 작성하였음.

참고문헌

  1. 김문수(2022). A Comparative Analysis of Students' Evaluations of Online and Offline Capstone Design Course. 공학교육연구, 25(1), 12-21. https://doi.org/10.18108/JEER.2022.25.1.12
  2. 김은이.송민호.(2017). 소셜 빅데이터를 이용한 경구피임제 TV광고의 여론 및 감정 분석 : '머시론' TV광고를 중심으로. 광고PR실학연구, 10(2), 39-63. https://doi.org/10.21331/JPRAPR.2017.10.2.002
  3. 민혜리.윤한솔(2017). 강의평가 주관식 응답에 나타난 교수와 학생의 의견 차이 비교분석: 강의의 장, 단점 의견에 대한 네트워크 및 내용분석. 학습자중심교과교육연구, 17(11), 307-330.
  4. 박상민 외(2018). Bi-LSTM 기반의 한국어 감성사전 구축 방안. 지능정보연구, 24(4), 219-240. https://doi.org/10.13088/JIIS.2018.24.4.219
  5. 변성훈.이석원(2019). A Comparative Study between LSI and LDA in Constructing Traceability between Functional and Non-Functional Requirements. 한국컴퓨터정보학회논문지. 24(7), 19-29. https://doi.org/10.9708/JKSCI.2019.24.07.019
  6. 신종호.최재원(2019). 텍스트 마이닝을 활용한 서술형 강의평가. 학습자중심교과교육연구, 19(16), 77-99.
  7. 위광호.김윤진.김문수(2021). 텍스트 마이닝을 활용한 캡스톤디자인 수강생들의 인식분석. 2021 한국교육학회 연차학술대회 e-Conference.
  8. 이대영.이현숙(2021). LDA 토픽 모델링의 적정 토픽 수 결정 방법 탐색. 교육평가연구, 34(1), 1-30.
  9. 이옥진 외(2020). 대학생들의 캡스톤 디자인 수업방법에 대한 인식이 학습성과에 미치는 영향. 학습자중심교과교육연구, 20(15), 1001-1015.
  10. 이태식 외(2009). 공학대학 캡스톤 디자인(창의적 공학 설계) 교육과정 운영실태 및 학습 만족도 조사. 공학교육연구, 12(2), 36-50. https://doi.org/10.18108/JEER.2009.12.2.36
  11. 이해듬.남민우(2018). 대학 강의평가 주관식 결과의 텍스트마이닝을 통한 전공 계열별 좋은 수업 분석. 한국유아교육연구, 20(2), 21-41.
  12. 이후희 외(2018). 대학 서술형 강의평가 자료의 언어네트워크 분석. 교육혁신연구, 28(2), 237-262. https://doi.org/10.21024/PNUEDI.28.2.201806.237
  13. 전영미(2018). 캡스톤디자인 수업이 학생역량 및 수업만족도에 미치는 효과에 대한 사례 연구. 한국콘텐츠학회 논문지, 18(3), 601-610.
  14. 최정웅.안동규(2016). 데이터분석을 이용한 서술형 강의평가 연구. 디지털융복합연구, 14(11), 101-106. https://doi.org/10.14400/JDC.2016.14.11.101
  15. 최현종(2019). 텍스트 마이닝을 활용한 고등학교 정보 교과서 핵심개념의 빈도 분석. 예술인문사회융합멀티미디어논문지, 9(11), 419-429. https://doi.org/10.35873/AJMAHS.2019.9.11.039
  16. 하정윤.나민주(2017). 학생의 강의 만족 및 불만 요인은 무엇인가?: A 대 서술형 강의평가 자료를 중심으로. 교육연구논총, 38(3), 61-77. https://doi.org/10.18612/CNUJES.2017.38.3.61
  17. 허미선.이정민(2021). 국내 캡스톤 디자인 교육의 학습효과에 관한 메타분석. 한국콘텐츠학회논문지, 21(4), 331-346. https://doi.org/10.5392/JKCA.2021.21.04.331
  18. Blei, David M.(2012). Introduction to Probabilistic Topic Models. Retrieved March 12, 2021. from https://www.eecis.udel.edu/~shatkay/Course/papers/UIntrotoTopicModelsBlei2011-5.pdf.
  19. Hotaling, N. et al.(2012). A quantitative analysis of the effects of a multidisciplinary engineering capstone design course. Journal of Engineering Education, 101(4), 630-656. https://doi.org/10.1002/j.2168-9830.2012.tb01122.x
  20. Hotho, A., Nurnberger, A. & Paass, G.(2005). A brief survey of text mining. In Ldv Forum, 20(1), 19-62.
  21. Kaur, A. & Kaur, H.(2018). Framework for Opinion Mining Approach to Augment Education System Performance. arXiv preprint arXiv: 1806.09279.
  22. Kim, M-S.(2019). Lessons from a capstone design course with a 3D printing project. Global Journal of Engineering Education, 21(3), 179-188.
  23. Palmer, S. & Hall, W.(2011). An evaluation of a project-based learning initiative in engineering education. European Journal of Engineering Education, 36(4), 357-365. https://doi.org/10.1080/03043797.2011.593095
  24. Staehle, M. M. et al.(2015). Communication-based learning objectives in a four-year engineering curriculum: a longitudinal analysis. Global Journal of Engineering Education, 17(1), 7-13.
  25. Whitfield, C. A., Rhoads, R. B. & Allenstein, J. T.(2015). Multidisciplinary capstone: academic preparation and important outcomes for engineering practice. International Journal of Engineering Education, 31, 1780-1798.