DOI QR코드

DOI QR Code

Optimal conditions for adventitious root organogenesis from peony root explant callus cultures

작약(Paeonia lactiflora Pall.) 뿌리절편 유래 캘러스 배양으로부터 부정근발생을 위한 최적 배양조건

  • Lee, Young Jin (Department of Emergency Medical Rescue, Nambu University) ;
  • Choi, Myung Suk (Division of Environmental Forest Science, Gyeongsang National University) ;
  • Choi, Pil Son (Department of Emergency Medical Rescue, Nambu University)
  • 이영진 (남부대학교 응급구조학과) ;
  • 최명석 (경상대학교 농업생명과학대학 환경산림과학부) ;
  • 최필선 (남부대학교 응급구조학과)
  • Received : 2022.09.05
  • Accepted : 2022.09.16
  • Published : 2022.09.30

Abstract

The optimal culture conditions for root organogenesis from the callus of peonies (Paeonia lactiflora Pall.) were investigated. Root explants with vascular bundles were cultured in Murashige and Skoog (MS) medium combined with 0.5-4.0 mg/L auxins (indole acetic acid [IAA], naphthalene acetic acid [NAA], indolebutyric acid [IBA], and 2,4-dichlorophenoxyacetic acid [2,4-D]) and 0.0-2.0 mg/L cytokinins (kinetin, zeatin, and benzylaminopurine [BAP]) to induce callus formation. The callus was then cultured in MS medium combined with three concentrations (0.1, 0.5, and 1.0 mg/L) of IAA, NAA, IBA, kinetin, zeatin, and BAP in the dark for 6 weeks. Based on the results, the effects of dark and light conditions on the callus cultured in MS medium with combinations of 0.1-1.0 mg/L IBA and zeatin for 6 weeks were studied. Callus formation was most effective (>+++) in the medium with a combination of 1.0 mg/L NAA and 1.0 mg/L zeatin. A high number of long adventitious roots were observed in the mediums with 0.1 mg/L IBA (6.66 and 4.82 cm) and 0.5 mg/L zeatin (2.32 and 0.72 cm) among auxins and cytokinins, respectively. The highest number (14.06) of adventitious roots were formed from the callus cultured in light in the MS medium combined with 0.1 mg/L IBA and 0.5 mg/L zeatin. This same medium induced the formation of the longest adventitious root (5.45 cm) in the dark. Thus, optimization of in vitro culture conditions may be possible for the mass propagation of adventitious roots in peonies.

작약 뿌리 절편으로부터 유도된 캘러스 클론으로부터 부정근 발생에 대한 최적의 배양조건을 조사하기 위하여 뿌리 절편으로부터 캘러스 유도를 위해서 먼저 0.5, 1.0, 2.0, 3.0, 4.0 mg/L 농도의 오옥신(IAA, NAA, IBA, 2,4-D)과 0, 0.5, 1.0, 2.0 mg/L 농도의 싸이토카닌(kinetin, zeatin, BAP)를 조합한 MS 배지에서 배양하였다. 캘러스 클론으로부터 부정근 유도와 길이 생장은 0.1, 0.5, 1.0 mg/L 농도의 오옥신(IAA, NAA, IBA) 또는 싸이토카닌(kinetin, zeatin, BAP)을 단독으로 첨가한 배지에서 암 조건으로 그리고 0.1, 0.5, 1.0 mg/L 농도의 IBA와 zeatin을 각각 조합 첨가한 배지에서 명/암 조건으로 6주 동안 배양하였다. 캘러스 형성은 다른 조합 처리보다 1.0 mg/L 농도의 NAA와 zeatin을 조합 첨가한 배지에서 가장 효과적이었으며, 캘러스 클론으로부터 부정근 발생 수와 부정근의 길이 생장은 IBA 단독처리의 경우 각각 6.66개와 4.82 cm, zeatin 단독 처리의 경우 2.32개와 0.92 cm로 다른 호르몬에 비해 우수하였다. 특히 0.1 mg/L IBA와 0.5 mg/L zeatin을 조합 첨가한 배지에서 광 조건으로 배양할 경우 가장 많은 부정근이(14.06) 형성되었으며, 동일배지에서 암 조건으로 배양할 경우 부정근의 길이가 가장 긴 5.45 cm로 측정되어 가장 효과적인 농도와 조합임을 알 수 있었다. 이러한 작약의 기내 배양에 대한 최적의 배양 조건은 기내배양을 통해 작약 부정근의 대량 생산을 위한 배지로 사용할 수 있음을 보여 주었다.

Keywords

References

  1. Afshari RT, Angoshtari R, Kalantari S (2011) Effects of light and different plant growth regulators on induction of callus growth in rapeseed (Brassica napus L.) genotypes. Omics J 4: 60-67
  2. Amitha K, Reedy TP (1996) Regeneration of plantlets from different expants and callus cultures of cowpea (Vigna unguiculata L.). Phytomorphology 46: 207-211
  3. Bertazza G, Baraldi R, Predieri S (1995) Light effects on in vitro rooting of pear cultivars of different rhizogenic ability. Plant Cell Tiss Org Cult 41: 139-143 https://doi.org/10.1007/BF00051582
  4. Brukhin VB, Batygina TB (1994) Embryo culture and somatic embryogenesis in culture of Paeonia anomala. Phytomorphology 44: 151-157
  5. Choi SJ, Meyer MM (1994) Effects of medium components on discoloration a necrosis of cultures in peony (Paeonia lactiflora Pall.) micropropagation. Kor J Plant Tiss Cult 21: 173-176
  6. Chung JD, Harn JS, Jee SO (1995) In vitro propagation of Paeonia lactiflora Pall. Through shoot tip culture of winter buds. Kor J Plant Tiss Cult 22: 101-104
  7. De Klerk GJ, Keppel M, Brugge JT (1995) Timing of the phases in adventitious root formation in apple microcuttings. J Exp Bot 46: 965-972 https://doi.org/10.1093/jxb/46.8.965
  8. Drew RA, Simpson BW, Osborne WJ (1991) Degradation of exogenous indole 3-butyric acid and riboflavin and their influence of rootings response of papaya in vitro. Plant Cell Tiss Org Cult 26: 29-34 https://doi.org/10.1007/BF00116606
  9. Fabijan D, Taylor JS, Reid DM (1981) Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings. II. Action of gibberellins, cytokinins, auxins and ethylene. Physiol Plant 53: 589-597 https://doi.org/10.1111/j.1399-3054.1981.tb02755.x
  10. Gonzalez A, Casares A, Sanchez TR (1991) Adventitious root induction in Corylus avellana, cotyledon slices. In Vitro Cell Dev Biol 27: 125-131 https://doi.org/10.1007/BF02632195
  11. Jana S, Jeong BR (2013) Shoot induction, biochemical changes during in vitro rooting in Paeonia lactiflora Pall 'Hortensis'. Science International DOI: 10.1731/sciintl.013.318-324
  12. Kim H, Cha HC (2015) Effect of gibberellin on the adventitious root formation from the leaves-derived calli in Persicaria perioliata. J Life Sci 25: 390-396 https://doi.org/10.5352/JLS.2015.25.4.390
  13. Kim TK, Joo KJ, Chung JD, Rhee IK (1996) Analysis of the content of paeoniflorin in peony roots cultivated on Kyeongbuk area. Agric Res Bull Kyungpook Natl Univ 14: 15-28
  14. Kim YS, Lee BK (1995) Callus induction and embryogenesis through pollen culture in Paeonia lactiflora Pall. Kor J Plant Tiss Cult 22: 13-17
  15. Kwon YS, Shin YA, Shon JK (2002) Effect of phenylacetic acid (PAA) on embryo formation in anther and microspore culture of Paeonia lactiflora. J Plant Biotechnol 29: 193-198 https://doi.org/10.5010/JPB.2002.29.3.193
  16. Marino G, Grandi F, Muzzi E, Giorgioni ME (2018) In vitro shoot multiplication and rooting of wild paeonia officinalis L ., subsp. officinalis. Eur J Hortic Sci 83: 125-134 https://doi.org/10.17660/eJHS.2018/83.3.1
  17. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15: 473-479 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  18. Pan T (2010) Studies on the tissue culture of multiple shoots and callus of Paeonia lactiflora. M.Sc. Thesis. Beijing Forestry University
  19. Selby C, Kennedey SG, Harvey BMR (1992) Adventitious root formation in hypocotyl cuttings of Picea sitchensis (Bong.) Carrthe: influence of plant growth factors. New Phytol 120: 453-457 https://doi.org/10.1111/j.1469-8137.1992.tb01792.x
  20. Shen M, Wang Q, Yu X, Teixeira da Silva JA (2012) Micropropagation of herbaceous peony (Paeonia lactiflora Pall.). Sci Horti 148: 30-38 https://doi.org/10.1016/j.scienta.2012.09.017
  21. Shin JH, Sohn JK, Kim KM, Kim KJ, Kim JC (1998) Effects of plant growth regulators on somatic embryogenesis from cotyledon of herbaceous peony (Paeonia lactiflora Pall.). Kor J Plant Tiss Cult 25: 115-118
  22. Shin JH, Sohn JK, Kim KM, Park SD, Kim KW (1997) Plant regeneration through somatic embryogenesis from cotyledon of herbaceous peony (Paeonia lactiflora Pall.). Kor J Plant Tiss Cult 24: 291-294
  23. Soh WY, Choi PS, Choi DY (1998) Effects of cytokinin on adventitious root formation in callus cultures of Vigna unguiculata (L.) Walp. In Vitro Cell Dev Biol-Plant 34: 189-195
  24. Sohn JK, Kim KS, Kim KM (1994) Development of pollen-derived embryos and ploidy level of their regenerated plants in Paeonia lactiflora Pall. Kor J Plant Tiss Cult 21: 215-219
  25. Sohn JK, Kim YH (1993) Effect of plant growth regulators on callus and embryo formation in anther culture of Paeonia lactiflora Pall. Kor J Plant Tiss Cult 20: 255-259
  26. Sohn JK, Kwon YS, Kim KM (1995) Effect of embryo morphology on plant development in anther cultures of Paeonia lactiflora Pall. Kor J Plant Tiss Cult 22: 165-168
  27. Vincent K, Mathew KM, Hariharan M (1992) Micropropagation of Kaempferia galanga L., a medicinal plant. Plant Cell Tiss Org Cult 28: 229-230 https://doi.org/10.1007/BF00055522
  28. Wang Y, Yue H (2009) Advances in browning researches in plant tissue culture of Paeonia. Heilongjiang Agric Sci 2: 159-160
  29. Yu J, Liu W, Liu J, Qin P, Xu L (2017) Auxin control of root organogenesis from callus in tissue culture. Frontiers in Plant Sci doi: 10.3389/fpls.2017.01385
  30. Yu XN, Wu HJ, Pan T (2011) Callus induction and differentiation of four peony cultivars. J Hunan Agric Univ (Nat Sci) 37: 166-171
  31. Zhang QR, Yang QS, Li YH (2007) Effects of different plant growth regulators on tissue culture of Paeonia lactiflora Pall. J Henan Agric Univ 41: 25-28