DOI QR코드

DOI QR Code

A simple mid-term preservation method (SMPM) of plant callus under low temperature conditions

저온 보존을 이용한 간편 중기 식물캘러스 저장법

  • Park, Sung-Chul (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Park, Su Hyun (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Soyoung (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jeong, Yu Jeong (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Cha Young (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jeong, Jae Cheol (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 박성철 (한국생명공학연구원 생물자원센터) ;
  • 박수현 (한국생명공학연구원 생물자원센터) ;
  • 김소영 (한국생명공학연구원 생물자원센터) ;
  • 정유정 (한국생명공학연구원 생물자원센터) ;
  • 김차영 (한국생명공학연구원 생물자원센터) ;
  • 정재철 (한국생명공학연구원 생물자원센터)
  • Received : 2022.09.23
  • Accepted : 2022.09.27
  • Published : 2022.09.30

Abstract

The repeated monthly or weekly subculture of plant callus is labor intensive and increases the risk of somaclonal variation from the parental callus line. The most effective method for preserving plant callus is cryopreservation, which involves storage in liquid nitrogen. However, this method cannot be applied to the callus of different plant species in the same manner, so it is difficult to develop a standardized cryopreservation method. In addition, the survival rate of the frozen callus after thawing and the regeneration rate after survival are uncertain. Therefore, it is necessary to develop a method to extend the subculture interval of plant callus in an active state. In this study, active plant calli of various species without freezing was incubated at 15℃ for 4 to 12 weeks without subculture. After 12 weeks, 8 lines of plant callus grew less than 2-fold when cultured at 25℃, but at least 2 times as much when cultured at 15℃. Moreover, total antioxidant activity did not differ significantly between plant callus recovered at 25℃ after culturing at 15℃ or at 25℃. These results show that the subculture interval can be extended at a temperature of 15℃ without need for modified medium composition or additional processes. In addition, positive results in all calli of several plant species are expected to reduce labor as well as somaclonal variation by increasing the subculture.

식물 캘러스의 월간 또는 주간의 반복적인 계대배양은 노동 집약적이며 모 세포주로부터 somaclonal variation 발생 위험을 증가시킨다. 식물 캘러스를 보존하기위한 가장 효과적인 방법은 액체질소에 저장하는 초저온동결보존 방법이다. 하지만 초저온동결보존 방법은 동일한 방법으로 여러 식물의 캘러스에 적용할 수 없어 보존 방법 개발에 많은 어려움이 따른다. 또한 해동 후 냉동되어진 캘러스의 생존과 생존 후 재생 속도가 불확실 하다는 단점이 있다. 그러므로 활성 상태의 식물 캘러스의 계대배양 간격을 증가시키는 방법의 개발이 필요하다. 본 연구에서는 냉동과정 없는 활성상태의 다양한 종의 식물 캘러스를 계대배양 없이 4주에서 12주 동안 15℃에서 배양하였다. 25℃에서 12주간 배양한 8종류의 식물 캘러스들은 모두 2배 이하의 성장을 보였으나 15℃에서 12주간 배양 조건에서는 8종류의 식물 캘러스들은 최소 2배 이상의 성장을 하였다. 또한 15℃에서 배양 후 25℃에서 회복시킨 캘러스들 사이의 항산화 활성 역시 크게 변화하지 변하지 않았다. 이러한 결과는 배지조성이나 특별한 새로운 과정없이 15℃ 저온으로 계대배양 간격을 증가시킬 수 있음을 보여준다. 또한 여러 식물 종의 캘러스들 모두에서 긍정적인 결과는 여러 캘러스들에 동일한 방법으로 계대배양 간격을 증가시킴으로 노동력 감소는 물론 somaclonal variation을 상대적으로 줄여 줄 것으로 예상한다.

Keywords

Acknowledgement

본 연구는 KRIBB 기관고유사업(KGM5382212, KGM5282223) 및 과학기술정보통신부의 재원으로 한국연구재단 바이오·의료기술개발사업의(2020M3A9I4038354) 지원을 받아 수행된 연구임.

References

  1. Augereau JM, Courtois D, Petiard V (1986) Long term storage of callus cultures at low temperatures or under mineral oil layer. Plant Cell Reports 5:372-376 https://doi.org/10.1007/BF00268605
  2. Boisson AM, Gout E, Bligny R, Rivasseau C (2012) A simple and efficient method for the long-term preservation of plant cell suspension cultures. Plant Methods 8:4 https://doi.org/10.1186/1746-4811-8-4
  3. Chai M, Jia Y, Chen S, Gao Z, Wang H, Liu L, Wang P, Hou D (2011) Callus induction, plant regeneration, and long-term maintenance of embryogenic cultures in Zoysia matrella [L.] Merr. Plant cell Tiss Organ Cult 104:187-192 https://doi.org/10.1007/s11240-010-9817-2
  4. Efferth T (2019) Biotechnology applications of plant callus culture. Engineering 5:50-59 https://doi.org/10.1016/j.eng.2018.11.006
  5. Eibl R, Meier P, Stutz I, Schildberger D, Huhn T, Eibl D (2018) Plant cell culture technology in the cosmetics and food industries: current state and future trends. Applied Microbiology and Biotechnology 102:8661-8675 https://doi.org/10.1007/s00253-018-9279-8
  6. Feher A (2019) Callus, dedifferentiation, totipotency, somatic embryogenesis: What these terms mean in the era of molecular plant biology. Frontiers in Plant Science 10:536 https://doi.org/10.3389/fpls.2019.00536
  7. Georgiew MI, Weber J, Maciuk A (2009) Bioprocessing of plant cell cultures for mass production of targeted compounds Appl Microbiol Biotechnol 83: 809-823 https://doi.org/10.1007/s00253-009-2049-x
  8. Guo B, Stiles AR, Liu CZ (2013) Low-temperature preincubation enhances survival and regeneration of cryopreserved Saussurea involucrate callus In Vitro Cell Dev Biol-Plant 49: 320-325 https://doi.org/10.1007/s11627-013-9497-9
  9. Jeong YJ, Park SH, Park SC, Kim S, Kim TH, Lee J, Kim SW, Ryu YB, Jeong JC, Kim CY (2020) Induced extracellular production of stilbenes in grapevine cell culture medium by elicitation with methyl jasmonate and stevioside. Bioresour Bioprocess 7:38 https://doi.org/10.1186/s40643-020-00329-3
  10. Krasteva G, Georgiev V, Pavlov A (2021) Recent applications of plant cell culture technology in cosmetics and foods. Engineering in Life Sciences (Eng Life Sci) 21:68-76 https://doi.org/10.1002/elsc.202000078
  11. Kulus (2019) Managing plant genetic resources using low and ultra-low temperature storage: a case study of tomato. Biodiversity and Conservation 28:1003-1027 https://doi.org/10.1007/s10531-019-01710-1
  12. Moriguchi T, Kozaki I, Matsuta N, Yamaki S (1988) Plant regeneration from grape callus stored under a combination of low temperature and silicone treatment. Plant cell, Tissue and Organ Culture 15:67-71 https://doi.org/10.1007/BF00039890
  13. Motolinia-Alcantara EA, Castillo-Araiza CO, Rodriguez-Monroy M, Roman-Guerrero A, Cruz-Sosa F (2021) Engineering Considerations to Produce Bioactive Compounds from Plant Cell Suspension Culture in Bioreactors. Plants 10:2762. https://doi.org/10.3390/plants10122762
  14. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15: 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  15. Murthy HN, Lee EJ, Paek KY (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tiss Organ Cult 118:1-16 https://doi.org/10.1007/s11240-014-0467-7
  16. Nausch H, Buyel JF (2021) Cryopreservation of plant cell cultures-Diverse practices and protocols. New Biotechnology 62:86-95 https://doi.org/10.1016/j.nbt.2021.02.002
  17. Sachett A, Gallas-Lopes M, Conterato GMM, Herrmann AP, Piato A (2021) Antioxidant activity by DPPH assay: in vitro protocol. protocols.io https://dx.doi.org/10.17504/protocols.io.btbpnimn
  18. Sugimoto K, Gordon SP, Meyerowitz (2011) Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation. Trends in Cell Biology 21:212-218 https://doi.org/10.1016/j.tcb.2010.12.004
  19. Theocharis A, Clement C, Barka EA (2012) Physiological and molecular changes in plants grown at low temperatures Planta 235:1091-1105 https://doi.org/10.1007/s00425-012-1641-y
  20. Vidyagina EO, Shestibratov KA (2018) Efficient technique for long-term in vitro storage of transgenic aspen genotypes. American Journal of Plant Sciences 9:2593-2600 https://doi.org/10.4236/ajps.2018.913188