DOI QR코드

DOI QR Code

Validation of MCS code for shielding calculation using SINBAD

  • Feng, XiaoYong (School of Mechanical Engineering, Pusan National University) ;
  • Zhang, Peng (Graduate School of Artificial Intelligence, Korea Advanced Institute of Science and Technology) ;
  • Lee, Hyunsuk (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Lee, Deokjung (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Lee, Hyun Chul (School of Mechanical Engineering, Pusan National University)
  • Received : 2021.12.31
  • Accepted : 2022.03.21
  • Published : 2022.09.25

Abstract

The MCS code is a computer code developed by the Ulsan National Institute of Science and Technology (UNIST) for simulation and calculation of nuclear reactor systems based on the Monte Carlo method. The code is currently used to solve two main types of reactor physics problems, namely, criticality problems and radiation shielding problems. In this paper, the radiation shielding capability of the MCS code is validated by simulating some selected SINBAD (Shielding Integral Benchmark Archive and Database) experiments. The whole validation was performed in two ways. Firstly, the functionality and computational rationality of the MCS code was verified by comparing the simulation results with those of MCNP code. Secondly, the validity and computational accuracy of the MCS code was confirmed by comparing the simulation results with the experimental results of SINBAD. The simulation results of the MCS code are highly consistent with the those of the MCNP code, and they are within the 2σ error bound of the experiment results. It shows that the calculation results of the MCS code are reliable when simulating the radiation shielding problems.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (2019R1A2C2089962).

References

  1. H. Lee, W. Kim, P. Zhang, A. Khassenov, Y. Jo, D. Lee, Development Status of Monte Carlo Code at UNIST, KNS Spring Meeting, Jeju, Korea, May 12-13, 2016.
  2. Vutheam Dos, Hyunsuk Lee, Yunki Jo, Matthieu Lemaire, Wonkyeong Kim, Sooyoung Choi, Peng Zhang, Deokjung Lee, Overcoming the challenges of Monte Carlo depletion: application to a material-testing reactor with the MCS code, Nucl. Eng. Technol. 52 (Issue 9) (September 2020) 1881-1895. https://doi.org/10.1016/j.net.2020.02.003
  3. I. Kodeli, E. Sartori, B. Kirk, SINBAD Shielding Benchmark Experiments Status and Planned Activities" the American Nuclear Society's 14th Biennial Topical Meeting of the Radiation Protection and Shielding Division, April 3-6, 2006. Carlsbad New Mexico, USA.
  4. Mikhail E. Netecha, et al., Experimental Study of Reactor Radiation Scattering in the Atmosphere, Research Development Institute of Power Eng, 1998, pp. 517-596.
  5. S. Yoshida, T. Nishitani, K. Ochiai, J. Kaneko, J. Hori, S. Sato, M. Yamauchi, R. Tanaka, M. Nakao, M. Wada, M. Wakisaka, I. Murata, C. Kutukake, S. Tanaka, T. Sawamura, A. Takahashi, Measurement of radiation skyshine with D-T neutron source, Fusion Eng. Des. 69 (2003) 637-641. https://doi.org/10.1016/S0920-3796(03)00196-0
  6. H. Maekawa, , et al.M. J, Fusion Blanket Benchmark Experiments on a 60 Cm-Thick Lithium Oxide Cylindrical Assembly, 1986, pp. 86-182.
  7. Sub Working Group of Fusion Reactor Physics Subcommittee, Collection of Experimental Data for Fusion Neutronics Benchmark JAERI-M 94-014, February 1994.
  8. F. Maekawa, et al., Benchmarck Experiment on a Copper Slab Assembly Bombarded by D-T Neutrons JAERI-M 94-038, March 1994.
  9. H. Freiesleben, W. Hansen, D. Richter, K. Seidel, S. Unholzer, TUD experimental benchmarks of Fe nuclear data, Fusion Eng. Des. 37 (1997) 31-37. https://doi.org/10.1016/S0920-3796(97)00028-8
  10. H. Freiesleben, W. Hansen, H. Klein, T. Novotny, D. Richter, R. Schwierz, K. Seidel, M. Tichy, S. Unholzer, Experimental Results of an Iron Slab Benchmark, Report Technische Universitaet Dresden", February 1995. TUD-PHY-94/2.
  11. H. Freiesleben, W. Hansen, D. Richter, K. Seidel, S. Unholzer, Experimental investigation of neutron and photon penetration and streaming through iron assemblies, Fusion Eng. Des. 28 (1995) 545-550. https://doi.org/10.1016/0920-3796(94)00314-W
  12. U. Fischer, H. Freiesleben, H. Klein, W. Mannhardt, D. Richter, D. Schmidt, K. Seidel, S. Tagesen, H. Tsige-Tamirat, S. Unholzer, H. Vonach, Y. Wu, Application of improved neutron cross-section data for Fe-56 to an integral fusion neutronics experiment, Int. Conf. on Nuclear Data for Science and Technology, Trieste (Italy) (May 19-24, 1997) 1137-1139.
  13. K. Seidel, M. Angelone, P. Batistoni, Y. Chen, U. Fischer, H. Freiesleben, C. Negoita, R.L. Perel, M. Pillon, S. Unholzer, Measurement and analysis of neutron and gamma-ray flux spectra in SiC, Fusion Eng. Des. 69 (2003) 379-383. https://doi.org/10.1016/S0920-3796(03)00077-2
  14. H. Freiesleben, C. Negoita, K. Seidel, S. Unholzer, U. Fischer, D. Leichtle, M. Angelone, P. Batistoni, M. Pillon, Measurement and Analysis of Neutron and g-ray Flux Spectra in Tungsten", Report TU Dresden, Institut fur Kern-und Teilchenphysik, March 2003. TUD-IKTP/01-03.
  15. H. Freiesleben, W. Hansen, D. Richter, K. Seidel, S. Unholzer, Shield Penetration Experiments, Report Technische Universitaet Dresden, Institut fuer Kernund Teilchenphysik, January 1995. TUD-IKTP-95/01.
  16. S. Guldbakke, H. Klein, A. Meister, J. Pulpan, U. Scheler, M. Tichy, S. Unholzer, in: H. Farrar, et al. (Eds.), Response Matrices of NE213 Scintillation Detectors for Neutrons", Reactor Dosimetry ASTM STP 1228, American Society for Testing Materials, Philadelphia, 1995, pp. 310-322.
  17. M. Angelone, M. Pillon, P. Batistoni, M. Martini, M. Martone, V. Rado, Absolute experimental and numerical calibration of the 14 MeV neutron source at the Frascati Neutron Generator, Rev. Sci. Instrum. 67 (1996) 2189. https://doi.org/10.1063/1.1147035
  18. Peng Zhang, Matthieu Lemaire, Bamidele Ebiwonjumi, Wonkyeong Kim, Hyunsuk Lee, Deokjung Lee, Nhan Nguyen Trong Mai, Extension of Monte Carlo code MCS to spent fuel cask shielding analysis, Int. J. Energy Res. (15 January 2020) 8089-8101.