DOI QR코드

DOI QR Code

Synthesis of multi-port converters based on series/parallel input pulsating cells and output pulsating cells

  • Gao, Ming (College of Electrical Engineering, Zhejiang University) ;
  • Yu, Weichen (College of Electrical Engineering, Zhejiang University) ;
  • Wang, Shanshan (College of Electrical Engineering, Zhejiang University) ;
  • Shi, Jianjiang (College of Electrical Engineering, Zhejiang University)
  • 투고 : 2022.01.08
  • 심사 : 2022.06.02
  • 발행 : 2022.10.20

초록

Due to their advantages of reduced cost, integrated multi-port converters (MPCs) with fewer components have received extensive attention. In this article, by extracting the concept of series/parallel input pulsating cells (IPCs) and output pulsating cells (OPCs), a set of syntheses for generating MPCs composed of IPCs and OPCs is proposed. When compared with the existing synthesis method for non-isolated MPCs, the proposed approach employs only one inductor and features single-stage power conversion between any two ports, which offers benefits in terms of compact size and high efficiency. Two design examples are shown to demonstrate the worth of proposed methodology. The operation principles are first analyzed. The pulsewidth modulation (PWM) and power control schemes are explained and designed in detail. To design the controllers, small-signal models for each of the operation modes are also extracted. Meanwhile, the characteristics of pulsating cells with different configurations are discussed and compared. The theoretical analysis is validated by simulation and experimental results for different operation conditions.

키워드

과제정보

This research is supported by the National Natural Science Foundation of China (52077199).

참고문헌

  1. Alajmi, B.N., Marei, M.I., Abdelsalam, I.: A multiport DC-DC converter based on two-quadrant inverter topology for PV systems. IEEE Trans. Power Electron. 36(1), 522-532 (2021)
  2. Ravada, B.R., Tummuru, N.R., Ande, B.N.L.: Photovoltaic-wind and hybrid energy storage integrated multi-source converter configuration for DC microgrid applications. IEEE Trans. Sustain. Energy. 12(1), 83-91 (2021) https://doi.org/10.1109/TSTE.2020.2983985
  3. Hawke, J.T., Krishnamoorthy, H.S., Enjeti, P.N.: A family of new multiport power-sharing converter topologies for large grid-connected fuel cells. IEEE J. Emerg. Sel. Top. Power Electron. 2(4), 962-971 (2014) https://doi.org/10.1109/JESTPE.2014.2348566
  4. Zeng, J., Du, X., Yang, Z.: A multiport bidirectional DC-DC converter for hybrid renewable energy system integration. IEEE Trans. Power Electron. 36(11), 12281-12291 (2021) https://doi.org/10.1109/TPEL.2021.3082427
  5. Faraji, R., Farzanehfard, H.: Fully soft-switched multiport DC-DC converter with high integration. IEEE Trans. Power Electron. 36(2), 1901-1908 (2021) https://doi.org/10.1109/TPEL.2020.3010412
  6. Khan, S.A., Islam, M.R., Guo, Y., Zhu, J.: A new isolated multiport converter with multi-directional power flow capabilities for smart electric vehicle charging stations. IEEE Trans. Appl. Supercond. 29(2), 0602504 (2019)
  7. Bhattacharjee, A.K., Kutkut, N., Batarseh, I.: Review of multiport converters for solar and energy storage integration. IEEE Trans. Power Electron. 34(2), 1431-1445 (2019) https://doi.org/10.1109/TPEL.2018.2830788
  8. Rostami, S., Abbas, V., Parastesh, M.: Design and implementation of a multiport converter using Z-source converter. IEEE Trans. Ind. Electron. 68(10), 9731-9741 (2021) https://doi.org/10.1109/TIE.2020.3022538
  9. Mishra, S.K., Nayak, K.K., Rana, M.S., Dharmarajan, V.: Switched-boost action based multiport converter. IEEE Trans. Ind. Appl. 55(1), 964-975 (2019) https://doi.org/10.1109/TIA.2018.2869098
  10. Wang, Z., Luo, Q., Wei, Y., Mou, D., Lu, X., Sun, P.: Topology analysis and review of three-port DC-DC converters. IEEE Trans. Power Electron. 35(11), 11783-11800 (2020) https://doi.org/10.1109/TPEL.2020.2985287
  11. Tao, H., Kotsopoulos, A., Duarte, J.L., Hendrix, A.M.: Transformercoupled multiport ZVS bidirectional DC-DC converter with wide input range. IEEE Trans. Power Electron. 23(2), 771-781 (2008) https://doi.org/10.1109/TPEL.2007.915129
  12. Ajami, A., Shayan, P.A.: Soft switching method for multiport DC/DC converters applicable in grid connected clean energy sources. IET Power Electron. 8(7), 1246-1254 (2015) https://doi.org/10.1049/iet-pel.2014.0592
  13. Zhang, J., Wu, H., Qin, X., Xing, Y.: PWM plus secondary-side phase-shift controlled soft-switching full-bridge three-port converter for renewable power systems. IEEE Trans. Ind. Electron. 62(11), 7061-7072 (2015) https://doi.org/10.1109/TIE.2015.2448696
  14. Wu, H., Zhang, J., Qin, X., Mu, T., Xing, Y.: Secondary-sideregulated soft-switching full-bridge three-port converter based on bridgeless boost rectifier and bidirectional converter for multiple energy interface. IEEE Trans. Power Electron. 31(7), 4847-4860 (2016)
  15. Wang, K., Zhu, R., Wei, C., Liu, F., Wu, X., Liserre, M.: Cascaded multilevel converter topology for large-scale photovoltaic system with balanced operation. IEEE Trans. Ind. Electron. 66(10), 7694-7705 (2019) https://doi.org/10.1109/TIE.2018.2885739
  16. Wu, H., Sun, K., Ding, S., Xing, Y.: Topology derivation of nonisolated three-port DC-DC converters from DIC and DOC. IEEE Trans. Power Electron. 28(7), 3297-3307 (2013) https://doi.org/10.1109/TPEL.2012.2221746
  17. Ding, S., Wu, H., Xing, Y., Fang, Y., Ma, X.: Topology and control of a family of non-isolated three-port DC-DC converters with a bidirectional cell. In: Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition, pp. 1089-1094 (2013)
  18. Faraji, R., Farzanehfard, H., Kampitsis, G., Mattavelli, M., Matioli, E., Esteki, M.: Fully soft-switched high step-up nonisolated three-port DC-DC converter using GaN HEMTs. IEEE Trans. Ind. Electron. 67(10), 8371-8380 (2020) https://doi.org/10.1109/TIE.2019.2944068
  19. Faraji, R., Ding, L., Esteki, M., Mazloum, N., Khajehoddin, S.A.: Soft-switched single inductor single stage multiport energy systems. IEEE Trans. Power Electron. 36(10), 11298-11315 (2021) https://doi.org/10.1109/TPEL.2021.3074378
  20. Nahavandi, A., Hagh, M.T., Sharifian, M.B.B., Danyali, S.: A nonisolated multiinput multioutput DC-DC boost converter for electric vehicle applications. IEEE Trans. Power Electron. 30(4), 1818-1835 (2015) https://doi.org/10.1109/TPEL.2014.2325830
  21. ROHM.: Efficiency of Buck Converter. Application Note. No. 64AN035E. 1-15. https://fscdn.rohm.com/en/products/databook/applinote/ic/power/switching_regulator/buck_converter_efficiency_app-e.pdf (2017). Accessed 1 May 2022
  22. Leppaaho, J., Suntio, T.: Solar generator interfacing with a Current- Fed Superbuck converter implemented by duality-transformation methods. In: The 2010 International Power Electronics Conference, pp. 680-687 (2010)
  23. Suntio, T., Leppaaho, J., Huusari, J., Nousiainen, L.: Issues on solar-generator interfacing with current-fed MPP-tracking converters. IEEE Trans. Power Electron. 25(9), 2409-2419 (2010) https://doi.org/10.1109/TPEL.2010.2048580
  24. Zhu, H., Zhang, D., Zhang, B., Zhou, Z.: A nonisolated three-port DC-DC converter and three-domain control method for PV-battery power systems. IEEE Trans. Ind. Electron. 62(8), 4937-4947 (2015) https://doi.org/10.1109/TIE.2015.2393831
  25. Chen, G., Jin, Z., Liu, Y., Zhang, J., Qing, X.: Programmable topology derivation and analysis of integrated three-port DC-DC converters with reduced switches for low-cost applications. IEEE Trans. Ind. Electron. 66(9), 6649-6660 (2019)
  26. Zhang, P., Chen, Y., Kang, Y.: Nonisolated wide operation range three-port converters with variable structures. IEEE J. Emerg. Sel. Top. Power Electron. 5(2), 854-869 (2017) https://doi.org/10.1109/JESTPE.2017.2657542