Acknowledgement
This research is supported by the National Natural Science Foundation of China (52077199).
References
- Alajmi, B.N., Marei, M.I., Abdelsalam, I.: A multiport DC-DC converter based on two-quadrant inverter topology for PV systems. IEEE Trans. Power Electron. 36(1), 522-532 (2021)
- Ravada, B.R., Tummuru, N.R., Ande, B.N.L.: Photovoltaic-wind and hybrid energy storage integrated multi-source converter configuration for DC microgrid applications. IEEE Trans. Sustain. Energy. 12(1), 83-91 (2021) https://doi.org/10.1109/TSTE.2020.2983985
- Hawke, J.T., Krishnamoorthy, H.S., Enjeti, P.N.: A family of new multiport power-sharing converter topologies for large grid-connected fuel cells. IEEE J. Emerg. Sel. Top. Power Electron. 2(4), 962-971 (2014) https://doi.org/10.1109/JESTPE.2014.2348566
- Zeng, J., Du, X., Yang, Z.: A multiport bidirectional DC-DC converter for hybrid renewable energy system integration. IEEE Trans. Power Electron. 36(11), 12281-12291 (2021) https://doi.org/10.1109/TPEL.2021.3082427
- Faraji, R., Farzanehfard, H.: Fully soft-switched multiport DC-DC converter with high integration. IEEE Trans. Power Electron. 36(2), 1901-1908 (2021) https://doi.org/10.1109/TPEL.2020.3010412
- Khan, S.A., Islam, M.R., Guo, Y., Zhu, J.: A new isolated multiport converter with multi-directional power flow capabilities for smart electric vehicle charging stations. IEEE Trans. Appl. Supercond. 29(2), 0602504 (2019)
- Bhattacharjee, A.K., Kutkut, N., Batarseh, I.: Review of multiport converters for solar and energy storage integration. IEEE Trans. Power Electron. 34(2), 1431-1445 (2019) https://doi.org/10.1109/TPEL.2018.2830788
- Rostami, S., Abbas, V., Parastesh, M.: Design and implementation of a multiport converter using Z-source converter. IEEE Trans. Ind. Electron. 68(10), 9731-9741 (2021) https://doi.org/10.1109/TIE.2020.3022538
- Mishra, S.K., Nayak, K.K., Rana, M.S., Dharmarajan, V.: Switched-boost action based multiport converter. IEEE Trans. Ind. Appl. 55(1), 964-975 (2019) https://doi.org/10.1109/TIA.2018.2869098
- Wang, Z., Luo, Q., Wei, Y., Mou, D., Lu, X., Sun, P.: Topology analysis and review of three-port DC-DC converters. IEEE Trans. Power Electron. 35(11), 11783-11800 (2020) https://doi.org/10.1109/TPEL.2020.2985287
- Tao, H., Kotsopoulos, A., Duarte, J.L., Hendrix, A.M.: Transformercoupled multiport ZVS bidirectional DC-DC converter with wide input range. IEEE Trans. Power Electron. 23(2), 771-781 (2008) https://doi.org/10.1109/TPEL.2007.915129
- Ajami, A., Shayan, P.A.: Soft switching method for multiport DC/DC converters applicable in grid connected clean energy sources. IET Power Electron. 8(7), 1246-1254 (2015) https://doi.org/10.1049/iet-pel.2014.0592
- Zhang, J., Wu, H., Qin, X., Xing, Y.: PWM plus secondary-side phase-shift controlled soft-switching full-bridge three-port converter for renewable power systems. IEEE Trans. Ind. Electron. 62(11), 7061-7072 (2015) https://doi.org/10.1109/TIE.2015.2448696
- Wu, H., Zhang, J., Qin, X., Mu, T., Xing, Y.: Secondary-sideregulated soft-switching full-bridge three-port converter based on bridgeless boost rectifier and bidirectional converter for multiple energy interface. IEEE Trans. Power Electron. 31(7), 4847-4860 (2016)
- Wang, K., Zhu, R., Wei, C., Liu, F., Wu, X., Liserre, M.: Cascaded multilevel converter topology for large-scale photovoltaic system with balanced operation. IEEE Trans. Ind. Electron. 66(10), 7694-7705 (2019) https://doi.org/10.1109/TIE.2018.2885739
- Wu, H., Sun, K., Ding, S., Xing, Y.: Topology derivation of nonisolated three-port DC-DC converters from DIC and DOC. IEEE Trans. Power Electron. 28(7), 3297-3307 (2013) https://doi.org/10.1109/TPEL.2012.2221746
- Ding, S., Wu, H., Xing, Y., Fang, Y., Ma, X.: Topology and control of a family of non-isolated three-port DC-DC converters with a bidirectional cell. In: Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition, pp. 1089-1094 (2013)
- Faraji, R., Farzanehfard, H., Kampitsis, G., Mattavelli, M., Matioli, E., Esteki, M.: Fully soft-switched high step-up nonisolated three-port DC-DC converter using GaN HEMTs. IEEE Trans. Ind. Electron. 67(10), 8371-8380 (2020) https://doi.org/10.1109/TIE.2019.2944068
- Faraji, R., Ding, L., Esteki, M., Mazloum, N., Khajehoddin, S.A.: Soft-switched single inductor single stage multiport energy systems. IEEE Trans. Power Electron. 36(10), 11298-11315 (2021) https://doi.org/10.1109/TPEL.2021.3074378
- Nahavandi, A., Hagh, M.T., Sharifian, M.B.B., Danyali, S.: A nonisolated multiinput multioutput DC-DC boost converter for electric vehicle applications. IEEE Trans. Power Electron. 30(4), 1818-1835 (2015) https://doi.org/10.1109/TPEL.2014.2325830
- ROHM.: Efficiency of Buck Converter. Application Note. No. 64AN035E. 1-15. https://fscdn.rohm.com/en/products/databook/applinote/ic/power/switching_regulator/buck_converter_efficiency_app-e.pdf (2017). Accessed 1 May 2022
- Leppaaho, J., Suntio, T.: Solar generator interfacing with a Current- Fed Superbuck converter implemented by duality-transformation methods. In: The 2010 International Power Electronics Conference, pp. 680-687 (2010)
- Suntio, T., Leppaaho, J., Huusari, J., Nousiainen, L.: Issues on solar-generator interfacing with current-fed MPP-tracking converters. IEEE Trans. Power Electron. 25(9), 2409-2419 (2010) https://doi.org/10.1109/TPEL.2010.2048580
- Zhu, H., Zhang, D., Zhang, B., Zhou, Z.: A nonisolated three-port DC-DC converter and three-domain control method for PV-battery power systems. IEEE Trans. Ind. Electron. 62(8), 4937-4947 (2015) https://doi.org/10.1109/TIE.2015.2393831
- Chen, G., Jin, Z., Liu, Y., Zhang, J., Qing, X.: Programmable topology derivation and analysis of integrated three-port DC-DC converters with reduced switches for low-cost applications. IEEE Trans. Ind. Electron. 66(9), 6649-6660 (2019)
- Zhang, P., Chen, Y., Kang, Y.: Nonisolated wide operation range three-port converters with variable structures. IEEE J. Emerg. Sel. Top. Power Electron. 5(2), 854-869 (2017) https://doi.org/10.1109/JESTPE.2017.2657542