References
- Khadkikar, V.: Enhancing electric power quality using UPQC: A comprehensive overview. IEEE Trans. Power. Electron. 27(5), 2284-2297 (2012) https://doi.org/10.1109/TPEL.2011.2172001
- Wang, J., Xing, Y., Wu, H., Yang, T.: A novel dual-DC-port dynamic voltage restorer with reduced-rating integrated DC-DC converter for wide-range voltage sag compensation. IEEE Trans. Power. Electron. 34(8), 7437-7449 (2019) https://doi.org/10.1109/TPEL.2018.2882534
- Axente, I., Ganesh, J.N., Basu, M., Conlon, M.F., Gaughan, K.: A 12-kVA DSP-Controlled laboratory prototype UPQC capable of mitigating unbalance in source voltage and load current. IEEE Trans. Power. Electron. 25(6), 1471-1479 (2010) https://doi.org/10.1109/TPEL.2010.2040635
- Kumar, V., Ramachandran, R.: Modelling and performance analysis of UPQC with digital kalman control algorithm under unbalanced distorted source voltage conditions. J. Power. Electron. 18(6), 1830-1843 (2018)
- Wang, Y., Obwoya, R.T., Li, Z., Li, G., Qu, Y., Shi, Z., Zhang, F., Xie, Y.: Precise modeling and adaptive feed-forward decoupling of unified power quality conditioners. J. Power. Electron. 19(2), 519-528 (2019)
- Han, B., Bae, B., Kim, H., Baek, S.: Combined operation of unified power-quality conditioner with distributed generation. IEEE Trans. Power. Deliv. 21(1), 330-338 (2006)
- Khadem, S.K., Basu, M., Conlon, M.F.: Intelligent islanding and seamless reconnection technique for microgrid with UPQC. IEEE J. Emerg. Sel. Topics. Power. Electron. 3(2), 483-492 (2015) https://doi.org/10.1109/JESTPE.2014.2326983
- Wang, F., Duarte, J.L., Hendrix, M.A.M.: Grid-interfacing converter systems with enhanced voltage quality for microgrid application-concept and implementation. IEEE Trans. Power. Electron. 26(12), 3501-3513 (2011) https://doi.org/10.1109/TPEL.2011.2147334
- Campanhol, L.B.G., da Silva, S.A.O., de Oliveira, A.A., Bacon, V.D.: Single-stage three-phase grid-tied PV system with universal filtering capability applied to DG systems and AC microgrids. IEEE Trans. Power Electron. 32(12), 9131-9142 (2017) https://doi.org/10.1109/TPEL.2017.2659381
- da Silva, S.A.O., Campanhol, L.B.G., Pelz, G.M., de Souza, V.: Comparative performance analysis involving a three-phase UPQC operating with conventional and dual/inverted power-line conditioning strategies. IEEE Trans. Power. Electron. 35(11), 11652-11665 (2020) https://doi.org/10.1109/TPEL.2020.2985322
- Somayajula, D., Crow, M.L.: An ultracapacitor integrated power conditioner for intermittency smoothing and improving power quality of distribution grid. IEEE Trans. Sustain. Energy. 5(4), 1145-1155 (2014) https://doi.org/10.1109/TSTE.2014.2334622
- Devassy, S., Singh, B.: Performance analysis of solar PV array and battery integrated unified power quality conditioner for microgrid systems. IEEE Trans. Ind. Electron. 68(5), 4027-4035 (2021) https://doi.org/10.1109/TIE.2020.2984439
- Wang, J., Sun, K., Wu, H., Zhu, J., Xing, Y., Li, Y.: Hybrid connected unified power quality conditioner integrating distributed generation with reduced power capacity and enhanced conversion efficiency. IEEE Trans. Ind. Electron. 68(12), 12340-21235 (2021) https://doi.org/10.1109/TIE.2020.3040687
- Wang, C., Li, Y.: Analysis and calculation of zero-sequence voltage considering neutral-point potential balancing in three-level NPC converters. IEEE Trans. Ind. Electron. 57(7), 2262-2271 (2010) https://doi.org/10.1109/TIE.2009.2024093
- Li, Y., Yang, X., Chen, W., Liu, T., Zhang, F.: Neutral-point voltage analysis and suppression for NPC three-level photovoltaic converter in LVRT operation under imbalanced grid faults with selective hybrid SVPWM strategy. IEEE Trans. Power. Electron. 34(2), 1334-1355 (2019) https://doi.org/10.1109/TPEL.2018.2834226
- Jiao, Y., Lee, F.C., Lu, S.: Space vector modulation for three-level NPC converter with neutral point voltage balance and switching loss reduction. IEEE Trans. Power. Electron. 29(10), 5579-6559 (2014) https://doi.org/10.1109/TPEL.2013.2294274
- Wang, J., Wu, H., Yang, T., Zhang, L., Xing, Y.: Bidirectional three-phase DC-AC converter with embedded DC-DC converter and carrier-based PWM strategy for wide voltage range applications. IEEE Trans. Ind. Electron. 66(6), 4144-4155 (2019) https://doi.org/10.1109/TIE.2018.2866080
- Jiang, W., et al.: A novel virtual space vector modulation with reduced common-mode voltage and eliminated neutral point voltage oscillation for neutral point clamped three-level inverter. IEEE Trans. Ind. Electron. 67(2), 884-894 (2020) https://doi.org/10.1109/TIE.2019.2899564
- Xu, X., Zheng, Z., Wang, K., Yang, B., Li, Y.: A comprehensive study of common mode voltage reduction and neutral point potential balance for a back-to-back three-level NPC converter. IEEE Trans. Power. Electron. 35(8), 7910-7920 (2020) https://doi.org/10.1109/TPEL.2019.2961385
- Ye, Z., Xu, Y., Wu, X., Tan, G., Deng, X., Wang, Z.: A simplified PWM Strategy for a neutral-point-clamped (NPC) three-level converter with unbalanced DC links. IEEE Trans. Power. Electron. 31(4), 3227-3238 (2016) https://doi.org/10.1109/TPEL.2015.2446501
- Yan, C., Xu, D., Chen, W.: General control scheme for a dualinput three-level inverter. IEEE Trans. Power. Electron. 34(2), 1838-1850 (2019) https://doi.org/10.1109/TPEL.2018.2829903
- Wang, J., Sun, K., Wu, H., Zhang, L., Zhu, J., Xing, Y.: Quasitwo- stage multifunctional photovoltaic inverter with power quality control and enhanced conversion efficiency. IEEE Trans. Power. Electron. 35(7), 7073-7085 (2020) https://doi.org/10.1109/TPEL.2019.2956940
- Pou, J., Zaragoza, J., Ceballos, S., Saeedifard, M., Boroyevich, D.: A Carrier-based PWM strategy with zero-sequence voltage injection for a three-level neutral-point-clamped converter. IEEE Trans. Power. Electron. 27(2), 642-651 (2012) https://doi.org/10.1109/TPEL.2010.2050783
- Wang, J., Gao, Y., Jiang, W.: A carrier-based implementation of virtual space vector modulation for neutral-point-clamped threelevel inverter. IEEE Trans. Ind. Electron. 64(12), 9580-9586 (2017) https://doi.org/10.1109/TIE.2017.2711550
- Subramanian, S., Mishra, M.K.: Interphase AC-AC topology for voltage sag supporter. IEEE Trans. Power. Electron. 25(2), 514-518 (2010) https://doi.org/10.1109/TPEL.2009.2027601
- Li, P., Xie, L., Han, J., Pang, S., Li, P.: A new voltage compensation philosophy for dynamic voltage restorer to mitigate voltage sags using three-phase voltage ellipse parameters. IEEE Trans. Power. Electron. 33(2), 1154-1166 (2018) https://doi.org/10.1109/TPEL.2017.2676681