DOI QR코드

DOI QR Code

Effect of Functional Exercise Using Linear Ladder on EEG Activities in College Men

줄사다리를 이용한 기능적 운동이 남자대학생의 뇌파 활성에 미치는 영향

  • 정석률 (차의과학대학교 스포츠의학과) ;
  • 이해림 (차의과학대학교 스포츠의학과) ;
  • 이성기 (차의과학대학교 스포츠의학과)
  • Received : 2022.08.30
  • Accepted : 2022.09.25
  • Published : 2022.09.30

Abstract

Background: Exercise influences the generation of brain cells through learning and experience in the process of acquiring motor skills and helps improve brain function. It is necessary to scientifically verify how brain wave activity, a method of analyzing brain function, affects movement. Purposes: We scientifically identify the positive effects on EEG activity when applying complex functional linear ladder movements in an appropriate environment. Methods: After recruiting 30 male university students, we divided them into a linear ladder exercise group, a treadmill exercise group, and a control group, and exercise was applied and measured repeatedly for ten weeks. Results: There was a statistically significant change between groups in the left prefrontal lobe of alpha waves when exercise was applied (p < .05). Conclusions: Although exercise has a positive effect on EEG, line ladder exercise, which applies a complex pattern and produces more leg movement, appears to have a better impact on brain function than traditional aerobic exercise.

배경: 운동은 운동기술을 습득하는 과정에서 학습 및 경험을 통해 뇌세포 생성에 영향을 미치며, 뇌기능 향상에 도움이 된다. 뇌기능을 분석하는 방법인 뇌파의 활성도를 통해 운동에 어떠한 영향을 미치는지를 과학적으로 검증이 필요하다. 목적: 적합한 환경에서 복합적이고 기능적인 줄 사다리 운동을 적용하였을 때 뇌파 활성에 미치는 긍정적인 효과를 과학적으로 규명하고자 한다. 방법: 남자대학생 30명을 모집 후 줄사다리운동집단, 트레드밀운동집단, 통제집단으로 나누어 10주간 운동을 적용하여 반복측정하였다. 결과: 운동 적용 시 알파파의 좌측 전전두엽에서 그룹 간에 통계적으로 유의한 변화가 나타났다(p < .05). 결론: 규칙적인 운동적용 시 뇌파에 긍정적인 영향을 미치지만, 복잡한 패턴을 적용하여 하지의 기능적 움직임을 만들어내는 줄 사다리 운동이 전통적인 유산소운동과 비교하여 뇌기능에 좋은 영향을 미친다고 볼 수 있다.

Keywords

References

  1. Amjad, I., H. Toor, I.K. Niazi, H. Afzal, M. Jochumsen, M. Shafique, et al. 2019. Therapeutic effects of aerobic exercise on EEG parameters and higher cognitive functions in mild cognitive impairment patients. Int. J. Neurosci. 129(6): 551-562. doi:10.1080/00207454.2018.1551894
  2. Bailey, S.P., E.E. Hall, S.E. Folger, and P.C. Miller. 2008. Changes in EEG during graded exercise on a recumbent cycle ergometer. J. Sports Sci. Med. 7(4): 505-511.
  3. Barnea, A., A. Rassis, and E. Zaidel. 2005. Effect of neuro feedback on hemispheric word recognition. Brain and cognition. 59(3): 314-321. doi:10.1016/j.bandc.2004.05.008
  4. Bazanova, O.M. and D. Vernon. 2014. Interpreting EEG alpha activity. Neurosci. Bio. Rev. 44: 94-110. doi:10.1016/j.neubiorev.2013.05.007
  5. Brismar, T. 2007. The human EEG-physiological and clinical studies. Physiol. Behav. 92: 141-147. doi: 10.1016/j.physbeh.2007.05.047
  6. Cahn, B.R. and J. Polich. 2006. Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychol. Bull. 132(2): 180-211. doi:10.1037/0033-2909.132.2.180
  7. Cotman, C.W., N.C. Berchtold, and L.A. Christie. 2007. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 30(9): 464-472. doi: 10.1016/j.tins.2007.06.011
  8. Crabbe, J.B. and R.K. Dishman. 2004. Brain electrocortical activity during and after exercise: a quantitative synthesis. Psychophysi. 41(4): 563-574. doi: 10.1111/j.1469-8986.2004.00176.x
  9. Delp, M.D., R.B. Armstrong, D.A. Godfrey, M.H. Laughlin, C.D. Ross, and M.K. Wilkerson. 2001. Exercise increases blood flow to locomotor, vestibular, cardiorespiratory and visual regions of the brain in miniature swine. J. Physiol. 533(3): 849-859. doi: 10.1111/j.1469-7793.2001.t01-1-00849.x
  10. Erickson, K.I., R.S. Prakash, M.W. Voss, L. Chaddock, L. Hu, K.S, Morris, et al. 2009. Aerobic fitness is associated with hippocampalvolume in elderly humans. Hippocampus 19(10): 1030-1039. doi: 10.1002/hipo.20547
  11. Garnacho-Castano, M.V., R. Dominguez, A. M. Gonzalez, R. Feliu-Ruano, N. Serra-Paya, J. L. Mate-Munoz. 2018. Exercise prescription using the borg rating of perceived exertion to improve fitness. Int. J. Sports Med. 39(02): 115-123. doi: 10.1055/s-0043-120761
  12. Hess, D.M., C.J. Joyce, B.L. Arnold, and B. M. Gansneder. 2001. Effect of a 4-week agility-training program on postural sway in the functionally unstable ankle. J. Sport Rehabil. 10(1): 24-35. doi: 10.1123/jsr.10.1.24
  13. Internationa 10-20 system. Laxtha Homepage, http://www.laxtha.com(2022.08.29.)
  14. Jeong, D.G., B.Y. Kang, and J.G. Lee. 2013. Change characteristics of electroencephalographic activity after acute treadmill exercise among healthy college people. J. Sport Sci. 22(4): 1035-1044.
  15. Jeong, J.W., C.M. Jeong, and K.H. Kim. 2012. Effect of maximal combined exercise on electroencephalographic wave and cognitive functions. J. Sport Sci. 21(2): 1033-1043.
  16. Karvonen, J. and T. Vuorimaa. 1988. Heart rate and exercise intensity during sports activities. Sports Med. 5(5): 303-311. doi: 10.2165/00007256-198805050-00002.
  17. Kim, Y.G. and N.G. Jang. 2000. Distribution of dominant EEG by level of mental activity. J. Kor. Behavi. Biol. Soc. 9(1): 51-60.
  18. Kim, Y.L. 2013. The review of exercise and neurotrophic factors(BDNF): With focus on acute aerobic, resistance exercise and regular aerobic, resistance training. J. Sport Leisure Studies. 52(2): 663-674. https://doi.org/10.51979/KSSLS.2013.05.52.663
  19. Landi, S.M., F. Baguear, and V. Della-Maggiore. 2011. One week of motor adaptation induces structural changes in primary motor cortex that predict long-term memory one year later. J. Neurosci. 31(33): 11808-11813. doi: 10.1523/JNEUROSCI. 2253-11.2011
  20. Lim, T.H., K.D. Hong, S.L. Park, and Y.S. Jang. 2006. EEG(electroencephalographic) characteristics according to national archer' concentration strategies. J. Coaching Develop. 8(1): 77-87.
  21. Moraes, H., C. Ferreira, A. Deslandes, M. Cagy, F. Pompeu, et al. 2007. Beta and alpha electroencephalographic activity changes after acute exercise. Arq. Neuro-Psiquiat. 65: 637-641. doi: 10.1590/S0004-282X2007000400018
  22. Park. C.G. 2010. The effect of SAQ training for athletic performance and physical fitness in female basketball athletes. J. Coaching Develop. 12(2): 219-228.
  23. Polman, R., J. Bloomfield, and A. Edwards. 2009. Effects of SAQ training and small-sided games on neuromuscular functioning in untrained subjects. J. Sports Physiol. Perform. 4(4): 494-505. doi: 10.1123/ijspp.4.4.494
  24. Sudha, V.N. and B.P. Chittibabu. 2012. Effect of six weeks of speed agility and quickness (SAQ) training programme on selected biomotor abilities of male handball players. Sports Yogic Sci. 1(3): 53-60.
  25. Kami, A., G. Meyer, P. Jezzard, M.M. Adams, R. Turner, G. Leslie G. and L.G. Ungerleider. 1995. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377: 155-158. https://doi.org/10.1038/377155a0
  26. Voelcker-Rehage, C. and C. Niemann. 2013. Structural and functional brain changes related to different types of physical activity across the life span. Neuro. Bio. Revi. 37(9): 2268-2295. doi: 10.1016/j.neubiorev.2013.01.028
  27. Yap, C.W. and L.E. Brown. 2000. Development of speed, agility, and quickness for the female soccer athlete. J. Strength Condit. 22(1): 9-12.