DOI QR코드

DOI QR Code

The Effect of Green Coffee Supplementation on Lipid Profile, Glycemic Indices, Inflammatory Biomarkers and Anthropometric Indices in Iranian Women With Polycystic Ovary Syndrome: A Randomized Clinical Trial

  • Mehrnoush Meshkani (Department of Nutrition Science, Science and Research Branch, Faculty of Medical Sciences and Technologies, Islamic Azad University) ;
  • Ahmad Saedisomeolia (Department of Nutrition Science, Science and Research Branch, Faculty of Medical Sciences and Technologies, Islamic Azad University) ;
  • Mirsaeed Yekaninejad (Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences) ;
  • Seyed Ahmad Mousavi (Department of Nutrition Science, Science and Research Branch, Faculty of Medical Sciences and Technologies, Islamic Azad University) ;
  • Azam Ildarabadi (Department of Nutrition Science, Science and Research Branch, Faculty of Medical Sciences and Technologies, Islamic Azad University) ;
  • Marzieh Vahid-Dastjerdi (Department of Obstetrics and Gynecology, School of Medicine, Tehran University of Medical Sciences)
  • Received : 2022.07.12
  • Accepted : 2022.10.10
  • Published : 2022.10.31

Abstract

Polycystic ovary syndrome (PCOS) is a heterogeneous clinical syndrome. Recent studies examine different strategies to modulate its related complications. Chlorogenic acid, as a bioactive component of green coffee (GC), is known to have great health benefits. The present study aimed to determine the effect of GC on lipid profile, glycemic indices, and inflammatory biomarkers. Forty-four PCOS patients were enrolled in this randomized clinical trial of whom 34 have completed the study protocol. The intervention group (n = 17) received 400 mg of GC supplements, while the placebo group (n = 17) received the same amount of starch for six weeks. Then, glycemic indices, lipid profiles, and inflammatory parameters were measured. After the intervention period, no significant difference was shown in fasting blood sugar, insulin level, Homeostasis model assessment of insulin resistance index, low-density lipoprotein, high-density lipoprotein, Interleukin 6 or 10 between supplementation and placebo groups. However, cholesterol and triglyceride serum levels decreased significantly in the intervention group (p < 0.05). This research confirmed that GC supplements might improve some lipid profiles in women with PCOS. However, more detailed studies with larger sample sizes are required to prove the effectiveness of this supplement.

Keywords

Acknowledgement

We would like to express our special thanks to all of the participating patients in this project.

References

  1. Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab 2004;89:2745-9.
  2. Sirmans SM, Pate KA. Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clin Epidemiol 2013;6:1-13.
  3. Ehrmann DA. Polycystic ovary syndrome. N Engl J Med 2005;352:1223-36.
  4. Apridonidze T, Essah PA, Iuorno MJ, Nestler JE. Prevalence and characteristics of the metabolic syndrome in women with polycystic ovary syndrome. J Clin Endocrinol Metab 2005;90:1929-35.
  5. Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev 2012;33:981-1030.
  6. Ovalle F, Azziz R. Insulin resistance, polycystic ovary syndrome, and type 2 diabetes mellitus. Fertil Steril 2002;77:1095-105.
  7. Aboeldalyl S, James C, Seyam E, Ibrahim EM, Shawki HE, Amer S. The role of chronic inflammation in polycystic ovarian syndrome-a systematic review and meta-analysis. Int J Mol Sci 2021;22:2734.
  8. Gonzalez F. Inflammation in polycystic ovary syndrome: underpinning of insulin resistance and ovarian dysfunction. Steroids 2012;77:300-5.
  9. Kelly CC, Lyall H, Petrie JR, Gould GW, Connell JM, Sattar N. Low grade chronic inflammation in women with polycystic ovarian syndrome. J Clin Endocrinol Metab 2001;86:2453-5.
  10. Moran LJ, Pasquali R, Teede HJ, Hoeger KM, Norman RJ. Treatment of obesity in polycystic ovary syndrome: a position statement of the Androgen Excess and Polycystic Ovary Syndrome Society. Fertil Steril 2009;92:1966-82.
  11. Amini L, Tehranian N, Movahedin M, Ramezani Tehrani F, Ziaee S. Antioxidants and management of polycystic ovary syndrome in Iran: a systematic review of clinical trials. Iran J Reprod Med 2015;13:1-8.
  12. Wang X, Yang Z, Xue B, Shi H. Activation of the cholinergic antiinflammatory pathway ameliorates obesity-induced inflammation and insulin resistance. Endocrinology 2011;152:836-46.
  13. Mihanfar A, Nouri M, Roshangar L, Khadem-Ansari MH. Polyphenols: natural compounds with promising potential in treating polycystic ovary syndrome. Reprod Biol 2021;21:100500.
  14. Malekahmadi M, Moradi Moghaddam O, Islam SM, Tanha K, Nematy M, Pahlavani N, Firouzi S, Zali MR, Norouzy A. Evaluation of the effects of pycnogenol (French maritime pine bark extract) supplementation on inflammatory biomarkers and nutritional and clinical status in traumatic brain injury patients in an intensive care unit: A randomized clinical trial protocol. Trials 2020;21:162.
  15. Kolahdouz-Mohammadi R, Malekahmadi M, Clayton ZS, Sadat SZ, Pahlavani N, Sikaroudi MK, Soltani S. Effect of egg consumption on blood pressure: a systematic review and meta-analysis of randomized clinical trials. Curr Hypertens Rep 2020;22:24.
  16. Shabgah AG, Norouzi F, Hedayati-Moghadam M, Soleimani D, Pahlavani N, Navashenaq JG. A comprehensive review of long non-coding RNAs in the pathogenesis and development of non-alcoholic fatty liver disease. Nutr Metab (Lond) 2021;18:22.
  17. Movahed S, Varshoee Tabrizi F, Pahlavani N, Seilanian Toussi M, Motlagh A, Eslami S, Ghayour-Mobarhan M, Nematy M, Ferns GA, Emadzadeh M, Khadem-Rezaiyan M, Alavi AH, Salek M, Zabeti P, Norouzy A. Comprehensive assessment of nutritional status and nutritional-related complications in newly diagnosed esophageal cancer patients: a cross-sectional study. Clin Nutr 2021;40:4449-55.
  18. Pahlavani N, Rostami D, Ebrahimi F, Azizi-Soleiman F. Nuts effects in chronic disease and relationship between walnuts and satiety: review on the available evidence. Obesity medicine 2020;17:100173.
  19. Hadi V, Pahlavani N, Malekahmadi M, Nattagh-Eshtivani E, Navashenaq JG, Hadi S, Ferns GA, Ghayour-Mobarhan M, Askari G, Norouzy A. Nigella sativa in controlling Type 2 diabetes, cardiovascular, and rheumatoid arthritis diseases: molecular aspects. J Res Med Sci 2021;26:20.
  20. Mohammadi K, Alizadeh Sani M, Nattagh-Eshtivani E, Yaribash S, Rahmani J, Shokrollahi Yancheshmeh B, Julian McClements D. A systematic review and meta-analysis of the impact of cornelian cherry consumption on blood lipid profiles. Food Sci Nutr 2021;9:4629-38.
  21. Sharifi S, Talebi S, Nattagh-Eshtivani E, Amiri Y, Askari G. The effect of garlic (allium sativum L) supplementation on circulating adiponectin: a systematic review and meta-analysis of randomized controlled trials. Clin Nutr Res 2021;10:257-67.
  22. Nattagh-Eshtivani E, Barghchi H, Pahlavani N, Barati M, Amiri Y, Fadel A, Khosravi M, Talebi S, Arzhang P, Ziaei R, Ghavami A. Biological and pharmacological effects and nutritional impact of phytosterols: a comprehensive review. Phytother Res 2022;36:299-322.
  23. Nattagh-Eshtivani E, Gheflati A, Barghchi H, Rahbarinejad P, Hachem K, Shalaby MN, Abdelbasset WK, Ranjbar G, Olegovich Bokov D, Rahimi P, Gholizadeh Navashenaq J, Pahlavani N. The role of Pycnogenol in the control of inflammation and oxidative stress in chronic diseases: molecular aspects. Phytother Res 2022;36:2352-74.
  24. Pahlavani N, Sedaghat A, Bagheri Moghaddam A, Mazloumi Kiapey SS, Gholizadeh Navashenaq J, Jarahi L, Reazvani R, Norouzy A, Nematy M, Safarian M, Ghayour-Mobarhan M. Effects of propolis and melatonin on oxidative stress, inflammation, and clinical status in patients with primary sepsis: Study protocol and review on previous studies. Clin Nutr ESPEN 2019;33:125-31.
  25. Farah A, Monteiro M, Donangelo CM, Lafay S. Chlorogenic acids from green coffee extract are highly bioavailable in humans. J Nutr 2008;138:2309-15.
  26. Shimoda H, Seki E, Aitani M. Inhibitory effect of green coffee bean extract on fat accumulation and body weight gain in mice. BMC Complement Altern Med 2006;6:9.
  27. Ochiai R, Jokura H, Suzuki A, Tokimitsu I, Ohishi M, Komai N, Rakugi H, Ogihara T. Green coffee bean extract improves human vasoreactivity. Hypertens Res 2004;27:731-7.
  28. Roshan H, Nikpayam O, Sedaghat M, Sohrab G. Effects of green coffee extract supplementation on anthropometric indices, glycaemic control, blood pressure, lipid profile, insulin resistance and appetite in patients with the metabolic syndrome: a randomised clinical trial. Br J Nutr 2018;119:250-8.
  29. Revuelta-Iniesta R, Al-Dujaili EA. Consumption of green coffee reduces blood pressure and body composition by influencing 11β-HSD1 enzyme activity in healthy individuals: a pilot crossover study using green and black coffee. BioMed Res Int 2014;2014:482704.
  30. Nikpayam O, Najafi M, Ghaffari S, Jafarabadi MA, Sohrab G, Roshanravan N. Effects of green coffee extract on fasting blood glucose, insulin concentration and homeostatic model assessment of insulin resistance (HOMA-IR): a systematic review and meta-analysis of interventional studies. Diabetol Metab Syndr 2019;11:91.
  31. Onakpoya I, Terry R, Ernst E. The use of green coffee extract as a weight loss supplement: a systematic review and meta-analysis of randomised clinical trials. Gastroenterol Res Pract 2011;2011:382852
  32. Gorji Z, Varkaneh HK, Talaei S, Nazary-Vannani A, Clark CC, Fatahi S, Rahmani J, Salamat S, Zhang Y. The effect of green-coffee extract supplementation on obesity: a systematic review and dose-response meta-analysis of randomized controlled trials. Phytomedicine 2019;63:153018.
  33. Asbaghi O, Kashkooli S, Mardani M, Rezaei Kelishadi M, Fry H, Kazemi M, Kaviani M. Effect of green coffee bean extract supplementation on liver function and inflammatory biomarkers: a meta-analysis of randomized clinical trials. Complement Ther Clin Pract 2021;43:101349.
  34. Lee IC, Lee JS, Lee JH, Kim Y, So WY. Anti-oxidative and anti-inflammatory activity of kenya grade AA green coffee bean extracts. Iran J Public Health 2019;48:2025-34.
  35. Mombaini E, Jafarirad S, Husain D, Haghighizadeh MH, Padfar P. The impact of green tea supplementation on anthropometric indices and inflammatory cytokines in women with polycystic ovary syndrome. Phytother Res 2017;31:747-54.
  36. Wilson MM, Thomas DR, Rubenstein LZ, Chibnall JT, Anderson S, Baxi A, Diebold MR, Morley JE. Appetite assessment: simple appetite questionnaire predicts weight loss in community-dwelling adults and nursing home residents. Am J Clin Nutr 2005;82:1074-81.
  37. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412-9.
  38. Kondo Y, Goto A, Noma H, Iso H, Hayashi K, Noda M. Effects of coffee and tea consumption on glucose metabolism: a systematic review and network meta-analysis. Nutrients 2018;11:48.
  39. Morvaridi M, Rayyani E, Jaafari M, Khiabani A, Rahimlou M. The effect of green coffee extract supplementation on cardio metabolic risk factors: a systematic review and meta-analysis of randomized controlled trials. J Diabetes Metab Disord 2020;19:645-60.
  40. Meng S, Cao J, Feng Q, Peng J, Hu Y. Roles of chlorogenic Acid on regulating glucose and lipids metabolism: a review. Evid Based Complement Alternat Med 2013;2013:801457.
  41. Rohn S, Rawel HM, Kroll J. Inhibitory effects of plant phenols on the activity of selected enzymes. J Agric Food Chem 2002;50:3566-71.
  42. Ishikawa A, Yamashita H, Hiemori M, Inagaki E, Kimoto M, Okamoto M, Tsuji H, Memon AN, Mohammadi A, Natori Y. Characterization of inhibitors of postprandial hyperglycemia from the leaves of Nerium indicum. J Nutr Sci Vitaminol (Tokyo) 2007;53:166-73.
  43. van Dijk AE, Olthof MR, Meeuse JC, Seebus E, Heine RJ, van Dam RM. Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care 2009;32:1023-5.
  44. Johnston KL, Clifford MN, Morgan LM. Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr 2003;78:728-33.
  45. Welsch CA, Lachance PA, Wasserman BP. Dietary phenolic compounds: inhibition of Na+-dependent D-glucose uptake in rat intestinal brush border membrane vesicles. J Nutr 1989;119:1698-704.
  46. Iwai K, Narita Y, Fukunaga T, Nakagiri O, Kamiya T, Ikeguchi M, Kikuchi Y. Study on the postprandial glucose responses to a chlorogenic acid-rich extract of decaffeinated green coffee beans in rats and healthy human subjects. Food Sci Technol Res 2012;18:849-60.
  47. Tunnicliffe JM, Eller LK, Reimer RA, Hittel DS, Shearer J. Chlorogenic acid differentially affects postprandial glucose and glucose-dependent insulinotropic polypeptide response in rats. Appl Physiol Nutr Metab 2011;36:650-9.
  48. Ong KW, Hsu A, Tan BK. Chlorogenic acid stimulates glucose transport in skeletal muscle via AMPK activation: a contributor to the beneficial effects of coffee on diabetes. PLoS One 2012;7:e32718.
  49. Wang ET, Calderon-Margalit R, Cedars MI, Daviglus ML, Merkin SS, Schreiner PJ, Sternfeld B, Wellons M, Schwartz SM, Lewis CE, Williams OD, Siscovick DS, Bibbins-Domingo K. Polycystic ovary syndrome and risk for long-term diabetes and dyslipidemia. Obstet Gynecol 2011;117:6-13.
  50. Kim JJ, Choi YM. Dyslipidemia in women with polycystic ovary syndrome. Obstet Gynecol Sci 2013;56:137-42.
  51. Zuniga LY, Aceves-de la Mora MC, Gonzalez-Ortiz M, Ramos-Nunez JL, Martinez-Abundis E. Effect of chlorogenic acid administration on glycemic control, insulin secretion, and insulin sensitivity in patients with impaired glucose tolerance. J Med Food 2018;21:469-73.
  52. Shahmohammadi HA, Hosseini SA, Hajiani E, Malehi AS, Alipour M. Effects of green coffee bean extract supplementation on patients with non-alcoholic fatty liver disease: a randomized clinical trial. Hepat Mon 2017;17:e12299.
  53. Li SY, Chang CQ, Ma FY, Yu CL. Modulating effects of chlorogenic acid on lipids and glucose metabolism and expression of hepatic peroxisome proliferator-activated receptor-α in golden hamsters fed on high fat diet. Biomed Environ Sci 2009;22:122-9.
  54. Muoio DM, Way JM, Tanner CJ, Winegar DA, Kliewer SA, Houmard JA, Kraus WE, Dohm GL. Peroxisome proliferator-activated receptor-α regulates fatty acid utilization in primary human skeletal muscle cells. Diabetes 2002;51:901-9.
  55. Wan CW, Wong CN, Pin WK, Wong MH, Kwok CY, Chan RY, Yu PH, Chan SW. Chlorogenic acid exhibits cholesterol lowering and fatty liver attenuating properties by up-regulating the gene expression of PPAR-α in hypercholesterolemic rats induced with a high-cholesterol diet. Phytother Res 2013;27:545-51.
  56. Rodriguez de Sotillo DV, Hadley M. Chlorogenic acid modifies plasma and liver concentrations of: cholesterol, triacylglycerol, and minerals in (fa/fa) Zucker rats. J Nutr Biochem 2002;13:717-26.
  57. Song SJ, Choi S, Park T. Decaffeinated green coffee bean extract attenuates diet-induced obesity and insulin resistance in mice. Evid Based Complement Alternat Med 2014;2014:718379.
  58. Hwang SJ, Kim YW, Park Y, Lee HJ, Kim KW. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflamm Res 2014;63:81-90.
  59. Wu C, Luan H, Zhang X, Wang S, Zhang X, Sun X, Guo P. Chlorogenic acid protects against atherosclerosis in ApoE-/- mice and promotes cholesterol efflux from RAW264.7 macrophages. PLoS One 2014;9:e95452.
  60. Du WY, Chang C, Zhang Y, Liu YY, Sun K, Wang CS, Wang MX, Liu Y, Wang F, Fan JY, Li PT, Han JY. High-dose chlorogenic acid induces inflammation reactions and oxidative stress injury in rats without implication of mast cell degranulation. J Ethnopharmacol 2013;147:74-83.
  61. Shin HS, Satsu H, Bae MJ, Zhao Z, Ogiwara H, Totsuka M, Shimizu M. Anti-inflammatory effect of chlorogenic acid on the IL-8 production in Caco-2 cells and the dextran sulphate sodium-induced colitis symptoms in C57BL/6 mice. Food Chem 2015;168:167-75.
  62. Shi H, Dong L, Jiang J, Zhao J, Zhao G, Dang X, Lu X, Jia M. Chlorogenic acid reduces liver inflammation and fibrosis through inhibition of toll-like receptor 4 signaling pathway. Toxicology 2013;303:107-14.
  63. Li Kwok Cheong JD, Croft KD, Henry PD, Matthews V, Hodgson JM, Ward NC. Green coffee polyphenols do not attenuate features of the metabolic syndrome and improve endothelial function in mice fed a high fat diet. Arch Biochem Biophys 2014;559:46-52.
  64. Thom E. The effect of chlorogenic acid enriched coffee on glucose absorption in healthy volunteers and its effect on body mass when used long-term in overweight and obese people. J Int Med Res 2007;35:900-8.
  65. Choi BK, Park SB, Lee DR, Lee HJ, Jin YY, Yang SH, Suh JW. Green coffee bean extract improves obesity by decreasing body fat in high-fat diet-induced obese mice. Asian Pac J Trop Med 2016;9:635-43.
  66. Heckman MA, Weil J, Gonzalez de Mejia E. Caffeine (1, 3, 7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters. J Food Sci 2010;75:R77-87.
  67. Bobillo C, Finlayson G, Martinez A, Fischman D, Beneitez A, Ferrero AJ, Fernandez BE, Mayer MA. Shortterm effects of a green coffee extract-, Garcinia c ambogia- and L-carnitine-containing chewing gum on snack intake and appetite regulation. Eur J Nutr 2018;57:607-15.