DOI QR코드

DOI QR Code

Experimental Evaluation of Hydrate Formation and Mechanical Properties of Limestone Calcined Clay Cement (LC3) According to Calcination Temperature of Low-Quality Kaolin Clay in Korea

국산 저품질 고령토의 소성온도에 따른 석회석 소성점토 시멘트(LC3)의 수화물 생성 및 기계적 특성 평가

  • Moon, Jae-Geun (Department of Architectural Engineering, Hanyang University) ;
  • Her, Sung-Wun (Department of Architectural Engineering, Hanyang University) ;
  • Cho, Seong-Min (Department of Architectural Engineering, Hanyang University) ;
  • Bae, Sung-Chul (Department of Architectural Engineering, Hanyang University)
  • 문제근 (한양대학교 건축공학과) ;
  • 허성원 (한양대학교 건축공학과) ;
  • 조성민 (한양대학교 건축공학과) ;
  • 배성철 (한양대학교 건축공학과)
  • Received : 2022.08.31
  • Accepted : 2022.09.19
  • Published : 2022.09.30

Abstract

In Korea, low-quality kaolin has significantly greater reserves and superior economic efficiency than high-purity kaolin. However, the utilization is low because it does not match the demand conditions of the market, and it is difficult to find a suitable source of demand. The purpose of this study is to derive the possibility and optimal calcination temperature of domestic low-quality kaolin that can be used as a raw material for limestone plastic clay cement (LC3). Isothermal calorimetry, X-ray diffraction analysis, Thermogravimetric Analysis, and compressive strength tests were conducted to evaluate hydrate generation and mechanical properties of LC3 paste according to calcination temperatures (600 ℃, 700 ℃, 800 ℃, 900 ℃). As a result, although 50 % of the clinker was replaced, the domestic low-quality kaolin clay produced calboaluminate hydrate and C(A)SH from the 3rd day of hydration, showing almost equal or higher strength to OPC, and there was a big difference in strength depending on the firing temperature.

국내에서 카올린 순도가 낮은 저품질의 고령토는 고순도의 고령토보다 월등히 많은 매장량과 우수한 경제성에도 불구하고 제품으로 활용되지 못하고 대부분 사장되고 있다. 본 연구의 목적은 국산 저품질 고령토를 석회석 소성점토 시멘트(LC3)의 원료로 활용할 수 있는 가능성과 최적의 소성온도를 도출하는 것으로, 고령토의 소성온도(600 ℃, 700 ℃, 800 ℃, 900 ℃)에 따른 LC3 페이스트의 수화물 생성과 기계적 특성을 평가하기 위해 등온 열량 측정, X-선 회절 분석, 열 중량 분석 및 압축강도 시험을 실시하였다. 결과적으로 국산 저품질 고령토 점토는 클링커의 50 %를 대체하였음에도 불구하고 수화 3일차부터 메타카올린의 포졸란 반응에 의해 카르보알루미네이트 수화물과 C(A)SH를 생성하여 OPC와 거의 동등하거나 그 이상의 강도를 나타냈으며, 소성온도에 따라 강도발현에 큰 차이가 발생하는 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 한국연구재단의 연구비지원(NRF-2020R1A4A1019074)에 의해 수행되었습니다.

References

  1. Alujas, A., Fernandez, R., Quintana, R., Scrivener, K.L., Martirena, F. (2015). Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration, Applied Clay Science, 108, 94-101. https://doi.org/10.1016/j.clay.2015.01.028
  2. Avet, F., Scrivener, K. (2018). Investigation of the calcined kaolinite content on the hydration of Limestone Calcined Clay Cement (LC3), Cement and Concrete Research, 107, 124-135. https://doi.org/10.1016/j.cemconres.2018.02.016
  3. Berodier, E.M.J. (2015). Impact of the supplementary cementitious materials on the kinetics and microstructural development of cement hydration(No. THESIS), EPFL.
  4. Cao, Y., Wang, Y., Zhang, Z., Ma, Y., Wang, H. (2021a). Turning sandstone clay into supplementary cementitious material: activation and pozzolanic reactivity evaluation, Composites Part B: Engineering, 223, 109137. https://doi.org/10.1016/j.compositesb.2021.109137
  5. Cao, Y., Wang, Y., Zhang, Z., Ma, Y., Wang, H. (2021b). Recent progress of utilization of activated kaolinitic clay in cementitious construction materials, Composites Part B: Engineering, 211, 108636. https://doi.org/10.1016/j.compositesb.2021.108636
  6. Cement Sustainability Initiative. (2018). Technology Roadmap Low-Carbon Transition in the Cement Industry.
  7. Cheng, S., Shui, Z., Sun, T., Yu, R., Zhang, G., Ding, S. (2017). Effects of fly ash, blast furnace slag and metakaolin on mechanical properties and durability of coral sand concrete, Applied Clay Science, 141, 111-117. https://doi.org/10.1016/j.clay.2017.02.026
  8. Hay, R., Li, L., Celik, K. (2022). Shrinkage, hydration, and strength development of limestone calcined clay cement (LC3) with different sulfation levels, Cement and Concrete Composites, 127, 104403. https://doi.org/10.1016/j.cemconcomp.2021.104403
  9. Her, S., Suh, H., Park, J., Im, S, Bae, S. (2020). A sustainable and viable method to recycle oyster shell waste as an alternative of limestone in limestone calcined clay cement (LC3), Journal of the Korean Recycled Construction Resources Institute, 8(2), 219-226. https://doi.org/10.14190/JRCR.2020.8.2.219
  10. Her, S., Park, J., Li, P., Bae, S. (2022). Feasibility study on utilization of pulverized eggshell waste as an alternative to limestone in raw materials for Portland cement clinker production, Construction and Building Materials, 324, 126589. https://doi.org/10.1016/j.conbuildmat.2022.126589
  11. Hong, C. (2016). Compressive strength and construction characteristics of environment friendly soil concrete pavement using Jeju sungup soil and red mud, Journal of Korean Society for Environmental Technology, 17(3), 275-285 [in Korean].
  12. Jee, H., Im, S., Kanematsu, M., Suzuki, H., Morooka, S., Taku, K., Machida, A., Bae, S. (2020). Determination of atomistic deformation of tricalcium silicate paste with high-volume fly ash, Journal of the American Ceramic Society, 103(12), 7188-7201. https://doi.org/10.1111/jace.17404
  13. Lothenbach, B., Scrivener, K., Hooton, R.D. (2011). Supplementary cementitious materials. Cement and concrete research, 41(12), 1244-1256. https://doi.org/10.1016/j.cemconres.2010.12.001
  14. Lin, R.S., Han, Y., Wang, X.Y. (2021). Macro-meso-micro experimental studies of calcined clay limestone cement (LC3) paste subjected to elevated temperature, Cement and Concrete Composites, 116, 103871. https://doi.org/10.1016/j.cemconcomp.2020.103871
  15. Moon, H., Choi, Y., Song, Y., Moon, D., Shin, H., Jung, C. (2004). Properties of compressive strength of mortar mixed with WCP for soil pavement, Proceedings of the Korea Concrete Institute Conference, 553-556 [in Korean].
  16. Nguyen, Q.D., Kim, T., Castel, A. (2020). Mitigation of alkali-silica reaction by limestone calcined clay cement (LC3), Cement and Concrete Research, 137, 106176. https://doi.org/10.1016/j.cemconres.2020.106176
  17. Panesar, D.K., Zhang, R. (2020). Performance comparison of cement replacing materials in concrete: limestone fillers and supplementary cementing materials-A review, Construction and Building Materials, 251, 118866. https://doi.org/10.1016/j.conbuildmat.2020.118866
  18. Ruan, Y., Jamil, T., Hu, C., Gautam, B.P., Yu, J. (2022). Microstructure and mechanical properties of sustainable cementitious materials with ultra-high substitution level of calcined clay and limestone powder, Construction and Building Materials, 314, 125416. https://doi.org/10.1016/j.conbuildmat.2021.125416
  19. Saha, A.K., Khan, M.N.N., Sarker, P.K., Shaikh, F.A., Pramanik, A. (2018). The ASR mechanism of reactive aggregates in concrete and its mitigation by fly ash: A critical review, Construction and Building Materials, 171, 743-758. https://doi.org/10.1016/j.conbuildmat.2018.03.183
  20. Scrivener, K.L. (2014). Options for the future of cement. Indian Concr. J, 88(7), 11-21.
  21. Scrivener, K., Martirena, F., Bishnoi, S., Maity, S. (2018). Calcined clay limestone cements (LC3), Cement and Concrete Research, 114, 49-56. https://doi.org/10.1016/j.cemconres.2017.08.017
  22. Sharma, M., Bishnoi, S., Martirena, F., Scrivener, K. (2021). Limestone calcined clay cement and concrete: A state-ofthe-art review, Cement and Concrete Research, 149, 106564. https://doi.org/10.1016/j.cemconres.2021.106564
  23. Shah, V., Parashar, A., Mishra, G., Medepalli, S., Krishnan, S., Bishnoi, S. (2020). Influence of cement replacement by limestone calcined clay pozzolan on the engineering properties of mortar and concrete, Advances in Cement Research, 32(3), 101-111. https://doi.org/10.1680/jadcr.18.00073
  24. Teklay, A., Yin, C., Rosendahl, L., Kohler, L.L. (2015). Experimental and modeling study of flash calcination of kaolinite rich clay particles in a gas suspension calciner, Applied Clay Science, 103, 10-19. https://doi.org/10.1016/j.clay.2014.11.003
  25. Wang, H., Hou, P., Li, Q., Adu-Amankwah, S., Chen, H., Xie, N., Zhao, P., Huang, Y., Wang, S., Cheng, X. (2021). Synergistic effects of supplementary cementitious materials in limestone and calcined clay-replaced slag cement, Construction and Building Materials, 282, 122648. https://doi.org/10.1016/j.conbuildmat.2021.122648
  26. Zhao, H., Sun, W., Wu, X., Gao, B. (2015). The properties of the self-compacting concrete with fly ash and ground granulated blast furnace slag mineral admixtures, Journal of Cleaner Production, 95, 66-74. https://doi.org/10.1016/j.jclepro.2015.02.050
  27. Zhang, D., Jaworska, B., Zhu, H., Dahlquist, K., Li, V.C. (2020). Engineered cementitious composites (ECC) with limestone calcined clay cement (LC3), Cement and Concrete Composites, 114, 103766. https://doi.org/10.1016/j.cemconcomp.2020.103766