Acknowledgement
본 연구는 한국연구재단의 연구비지원(NRF-2020R1A4A1019074)에 의해 수행되었습니다.
References
- Alujas, A., Fernandez, R., Quintana, R., Scrivener, K.L., Martirena, F. (2015). Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration, Applied Clay Science, 108, 94-101. https://doi.org/10.1016/j.clay.2015.01.028
- Avet, F., Scrivener, K. (2018). Investigation of the calcined kaolinite content on the hydration of Limestone Calcined Clay Cement (LC3), Cement and Concrete Research, 107, 124-135. https://doi.org/10.1016/j.cemconres.2018.02.016
- Berodier, E.M.J. (2015). Impact of the supplementary cementitious materials on the kinetics and microstructural development of cement hydration(No. THESIS), EPFL.
- Cao, Y., Wang, Y., Zhang, Z., Ma, Y., Wang, H. (2021a). Turning sandstone clay into supplementary cementitious material: activation and pozzolanic reactivity evaluation, Composites Part B: Engineering, 223, 109137. https://doi.org/10.1016/j.compositesb.2021.109137
- Cao, Y., Wang, Y., Zhang, Z., Ma, Y., Wang, H. (2021b). Recent progress of utilization of activated kaolinitic clay in cementitious construction materials, Composites Part B: Engineering, 211, 108636. https://doi.org/10.1016/j.compositesb.2021.108636
- Cement Sustainability Initiative. (2018). Technology Roadmap Low-Carbon Transition in the Cement Industry.
- Cheng, S., Shui, Z., Sun, T., Yu, R., Zhang, G., Ding, S. (2017). Effects of fly ash, blast furnace slag and metakaolin on mechanical properties and durability of coral sand concrete, Applied Clay Science, 141, 111-117. https://doi.org/10.1016/j.clay.2017.02.026
- Hay, R., Li, L., Celik, K. (2022). Shrinkage, hydration, and strength development of limestone calcined clay cement (LC3) with different sulfation levels, Cement and Concrete Composites, 127, 104403. https://doi.org/10.1016/j.cemconcomp.2021.104403
- Her, S., Suh, H., Park, J., Im, S, Bae, S. (2020). A sustainable and viable method to recycle oyster shell waste as an alternative of limestone in limestone calcined clay cement (LC3), Journal of the Korean Recycled Construction Resources Institute, 8(2), 219-226. https://doi.org/10.14190/JRCR.2020.8.2.219
- Her, S., Park, J., Li, P., Bae, S. (2022). Feasibility study on utilization of pulverized eggshell waste as an alternative to limestone in raw materials for Portland cement clinker production, Construction and Building Materials, 324, 126589. https://doi.org/10.1016/j.conbuildmat.2022.126589
- Hong, C. (2016). Compressive strength and construction characteristics of environment friendly soil concrete pavement using Jeju sungup soil and red mud, Journal of Korean Society for Environmental Technology, 17(3), 275-285 [in Korean].
- Jee, H., Im, S., Kanematsu, M., Suzuki, H., Morooka, S., Taku, K., Machida, A., Bae, S. (2020). Determination of atomistic deformation of tricalcium silicate paste with high-volume fly ash, Journal of the American Ceramic Society, 103(12), 7188-7201. https://doi.org/10.1111/jace.17404
- Lothenbach, B., Scrivener, K., Hooton, R.D. (2011). Supplementary cementitious materials. Cement and concrete research, 41(12), 1244-1256. https://doi.org/10.1016/j.cemconres.2010.12.001
- Lin, R.S., Han, Y., Wang, X.Y. (2021). Macro-meso-micro experimental studies of calcined clay limestone cement (LC3) paste subjected to elevated temperature, Cement and Concrete Composites, 116, 103871. https://doi.org/10.1016/j.cemconcomp.2020.103871
- Moon, H., Choi, Y., Song, Y., Moon, D., Shin, H., Jung, C. (2004). Properties of compressive strength of mortar mixed with WCP for soil pavement, Proceedings of the Korea Concrete Institute Conference, 553-556 [in Korean].
- Nguyen, Q.D., Kim, T., Castel, A. (2020). Mitigation of alkali-silica reaction by limestone calcined clay cement (LC3), Cement and Concrete Research, 137, 106176. https://doi.org/10.1016/j.cemconres.2020.106176
- Panesar, D.K., Zhang, R. (2020). Performance comparison of cement replacing materials in concrete: limestone fillers and supplementary cementing materials-A review, Construction and Building Materials, 251, 118866. https://doi.org/10.1016/j.conbuildmat.2020.118866
- Ruan, Y., Jamil, T., Hu, C., Gautam, B.P., Yu, J. (2022). Microstructure and mechanical properties of sustainable cementitious materials with ultra-high substitution level of calcined clay and limestone powder, Construction and Building Materials, 314, 125416. https://doi.org/10.1016/j.conbuildmat.2021.125416
- Saha, A.K., Khan, M.N.N., Sarker, P.K., Shaikh, F.A., Pramanik, A. (2018). The ASR mechanism of reactive aggregates in concrete and its mitigation by fly ash: A critical review, Construction and Building Materials, 171, 743-758. https://doi.org/10.1016/j.conbuildmat.2018.03.183
- Scrivener, K.L. (2014). Options for the future of cement. Indian Concr. J, 88(7), 11-21.
- Scrivener, K., Martirena, F., Bishnoi, S., Maity, S. (2018). Calcined clay limestone cements (LC3), Cement and Concrete Research, 114, 49-56. https://doi.org/10.1016/j.cemconres.2017.08.017
- Sharma, M., Bishnoi, S., Martirena, F., Scrivener, K. (2021). Limestone calcined clay cement and concrete: A state-ofthe-art review, Cement and Concrete Research, 149, 106564. https://doi.org/10.1016/j.cemconres.2021.106564
- Shah, V., Parashar, A., Mishra, G., Medepalli, S., Krishnan, S., Bishnoi, S. (2020). Influence of cement replacement by limestone calcined clay pozzolan on the engineering properties of mortar and concrete, Advances in Cement Research, 32(3), 101-111. https://doi.org/10.1680/jadcr.18.00073
- Teklay, A., Yin, C., Rosendahl, L., Kohler, L.L. (2015). Experimental and modeling study of flash calcination of kaolinite rich clay particles in a gas suspension calciner, Applied Clay Science, 103, 10-19. https://doi.org/10.1016/j.clay.2014.11.003
- Wang, H., Hou, P., Li, Q., Adu-Amankwah, S., Chen, H., Xie, N., Zhao, P., Huang, Y., Wang, S., Cheng, X. (2021). Synergistic effects of supplementary cementitious materials in limestone and calcined clay-replaced slag cement, Construction and Building Materials, 282, 122648. https://doi.org/10.1016/j.conbuildmat.2021.122648
- Zhao, H., Sun, W., Wu, X., Gao, B. (2015). The properties of the self-compacting concrete with fly ash and ground granulated blast furnace slag mineral admixtures, Journal of Cleaner Production, 95, 66-74. https://doi.org/10.1016/j.jclepro.2015.02.050
- Zhang, D., Jaworska, B., Zhu, H., Dahlquist, K., Li, V.C. (2020). Engineered cementitious composites (ECC) with limestone calcined clay cement (LC3), Cement and Concrete Composites, 114, 103766. https://doi.org/10.1016/j.cemconcomp.2020.103766