DOI QR코드

DOI QR Code

15년간 노출 시험한 일반 콘크리트의 탄산화 특성 검토

Carbonation Properties of Ordinary Concrete Exposed for 15 Years

  • 이빛나 (한국건설기술연구원 구조연구본부) ;
  • 이종석 (한국건설기술연구원 구조연구본부)
  • Lee, Binna (Department of Structural Engineering Research, KICT) ;
  • Lee, Jong-Suk (Department of Structural Engineering Research, KICT)
  • 투고 : 2022.09.02
  • 심사 : 2022.09.19
  • 발행 : 2022.09.30

초록

본 연구에서는 국내 환경에서 장기간 옥외 노출 시험을 수행하였으며 이 중 콘크리트의 탄산화 특성에 대해 분석하였다. 시험체는 물/시멘트비에 따라 40 %, 50 % 및 60 %로 총 3종류를 대상으로 수행하였으며, 재령 3년차 및 재령 15년차의 탄산화 측정 및 분석하였으며 이를 대상으로 장기 탄산화 예측 모델을 도출하여 국내외 탄산화 예측 모델과 비교·분석하였다. 분석결과, 물/시멘트비에 따라 탄산화가 증가하는 경향을 보였으며 물/시멘트비 40 %를 기준으로 물/시멘트비 50 %의 경우 약 1.8배, 물/시멘트비 60 %의 경우 약 3.7배 증가하였다. 재령에 따른 탄산화를 비교한 결과 기존 문헌처럼 재령에 따라 증가하는 경향을 보였으며 본 시험체의 경우 재령 15년차 탄산화 값이 재령 3년차 기준 약 3배 정도 높게 나타났다. 본 연구에서 실측한 탄산화를 바탕으로 국내외 탄산화 예측 모델과 비교한 결과 기존 예측 모델과 많은 차이를 보이고 있으며, 추후 지속적으로 데이터를 확보하여 검증 및 개선할 예정이다.

In this study, Long-term test specimens were tested in the outdoor exposure environment and the carbonation properies of concrete were analyzed. The test specimens were manufactured in 40 %, 50 % and 60 % according to the w/c ratio. Carbonation was measured at 3 years and 15 years of age. Based on the results, long-term carbonation prediction models(KICT model) were derived. As a result, carbonation increased according to the w/c. Based on the w/c 40 %, w/c 50 % increased about 1.8 times and w/c 60 % increased about 3.7 times. Comparison of carbonation according to age was that the carbonation at 15th year was about 3 times higher that of 3rd year. As results of comparing the KICT models and other carbonation prediction models, the carbonation prediction showed different values.

키워드

과제정보

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원사업(주요사업)인 '국민 안전과 건전한 인프라 환경을 위한 지속가능한 인프라 구조 기술 연구(수행과제번호: 20220263-001)'과제에 의해 수행되었습니다.

참고문헌

  1. Architectural Institute of Japan (2004). Recommendations for durability design and construction practice of reinforced concrete, 99, 92-108.
  2. CEB General Task Group 20 (1989), Durable Concrete StructureDesign Code, CEB, Thomas Telford, 27-57.
  3. Chai, W.K., Lee, M.G., Son, Y.H. (2015). Field research for the durability assessment factor for deriving the carbonation of concrete bridges in the marine environment, International Journal of Safety, 30(6), 102-109.
  4. Japan Society of Civil Engineers (2010). Standard Specifications for Concrete Structures - 2007 Maintenance, 110-112.
  5. KDS 14 20 40 (2022). Concrete Standard Specification Durable Side, Ministry of Construction and Transportation, 11-17 [in Korean].
  6. KICT. (2006). Long-term Measurement of Airbone Chloride and Durability of Concrete Mixed with Sea Sand [in Korean].
  7. Kishitani, K. (1963). Durability of Reinforced Concrete, Kibodang Press.
  8. Korea Meteorological Administration (KMA). www.kma.go.kr
  9. KS F 2584. (2015). Standard Test Method for Accelerated Carbonation of Concrete, Korea Industrial Standards, Korean Standards & Certification Information Center, 1-4 [in Korean].
  10. Kim, M.H., Kwon, Y.J., Kang, S.P., Kim, G.Y. (2001). A study on the investigation of carbonation velocity and remaining life by actual condition for reinforced concrete apartments in Korea, Journal of the Architectural Institute of Korea Structure & Construction, 17(1), 45-50 [in Korean].
  11. Kwon, S.J., Park, S.S., Nam, S. (2007). A suggestion for carbonation prediction using domestic field survey data of carbonation, Journal of the Korea Institute for Structural Maintenance and Inspection, 11(5), 81-88 [in Korean].
  12. Kim, J.H., Oh, K.C., Park, S.B. (2008). A study on carbonation velocity for concrete structures, Journal of the Korea Institute for Structural Maintenance and Inspection, 12(2), 163-170 [in Korean].
  13. Martin, J. (1985). Service life predictions from accelerated aging tests using reliability theory and life testing analysis, Problems in Service Life Prediction of Building and Construction Materials, Master, L.W. ed., Martinus Nijhoff Publishers, Dordrecht, 191-212.
  14. Papadakis, V.G., Constantinos G.V., Michael N.F. (1991). Fundamental modeling and experimental investigation of concrete carbonation, ACI Materials Journal, 88(4), 363-373.
  15. Park, Y.G. (2002). Development of Carbonation-Prediction Equation of Concrete Under Domestic Exposure Environments, Ph.D Thesis, Yonsei University [in Korean].
  16. Parrott, L. (1989). Water absorption in corner concrete, Materials and Structures, 25(149), 284-292. https://doi.org/10.1007/BF02472669
  17. Sarja, A., Vesikari, E. (1996). Durability Design of Concrete Structures : Report of RILEM Technical Committee 130-CSL, London : E&FN Spon, 28-52.
  18. Seo, C.H. Lee, H.S. (2002). Mechanism and effect factors of carbonation in concrete, Proceedings of the Korea Concrete Institute Conference, 14(1), 2-12 [in Korean].
  19. Wierig, H.J. (1984). Longtime Studies on the Carbonation of Concrete Under Normal Outdoor Exposure, RILEM Seminar on Durability of Concrete Structures Under Normal Outdoor Exposure, Hannover, 239-249.
  20. Yang, J.W., Yoon, S.Y., Cho, H.K., Song, H., Lee, H.S. (2010). A study on the factors which influence on evaluating service life for carbonation of RC structures, KIEAE Journal,10(3), 103-110 [in Korean].