Acknowledgement
본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원사업(주요사업)인 '국민 안전과 건전한 인프라 환경을 위한 지속가능한 인프라 구조 기술 연구(수행과제번호: 20220263-001)'과제에 의해 수행되었습니다.
References
- Architectural Institute of Japan (2004). Recommendations for durability design and construction practice of reinforced concrete, 99, 92-108.
- CEB General Task Group 20 (1989), Durable Concrete StructureDesign Code, CEB, Thomas Telford, 27-57.
- Chai, W.K., Lee, M.G., Son, Y.H. (2015). Field research for the durability assessment factor for deriving the carbonation of concrete bridges in the marine environment, International Journal of Safety, 30(6), 102-109.
- Japan Society of Civil Engineers (2010). Standard Specifications for Concrete Structures - 2007 Maintenance, 110-112.
- KDS 14 20 40 (2022). Concrete Standard Specification Durable Side, Ministry of Construction and Transportation, 11-17 [in Korean].
- KICT. (2006). Long-term Measurement of Airbone Chloride and Durability of Concrete Mixed with Sea Sand [in Korean].
- Kishitani, K. (1963). Durability of Reinforced Concrete, Kibodang Press.
- Korea Meteorological Administration (KMA). www.kma.go.kr
- KS F 2584. (2015). Standard Test Method for Accelerated Carbonation of Concrete, Korea Industrial Standards, Korean Standards & Certification Information Center, 1-4 [in Korean].
- Kim, M.H., Kwon, Y.J., Kang, S.P., Kim, G.Y. (2001). A study on the investigation of carbonation velocity and remaining life by actual condition for reinforced concrete apartments in Korea, Journal of the Architectural Institute of Korea Structure & Construction, 17(1), 45-50 [in Korean].
- Kwon, S.J., Park, S.S., Nam, S. (2007). A suggestion for carbonation prediction using domestic field survey data of carbonation, Journal of the Korea Institute for Structural Maintenance and Inspection, 11(5), 81-88 [in Korean].
- Kim, J.H., Oh, K.C., Park, S.B. (2008). A study on carbonation velocity for concrete structures, Journal of the Korea Institute for Structural Maintenance and Inspection, 12(2), 163-170 [in Korean].
- Martin, J. (1985). Service life predictions from accelerated aging tests using reliability theory and life testing analysis, Problems in Service Life Prediction of Building and Construction Materials, Master, L.W. ed., Martinus Nijhoff Publishers, Dordrecht, 191-212.
- Papadakis, V.G., Constantinos G.V., Michael N.F. (1991). Fundamental modeling and experimental investigation of concrete carbonation, ACI Materials Journal, 88(4), 363-373.
- Park, Y.G. (2002). Development of Carbonation-Prediction Equation of Concrete Under Domestic Exposure Environments, Ph.D Thesis, Yonsei University [in Korean].
- Parrott, L. (1989). Water absorption in corner concrete, Materials and Structures, 25(149), 284-292. https://doi.org/10.1007/BF02472669
- Sarja, A., Vesikari, E. (1996). Durability Design of Concrete Structures : Report of RILEM Technical Committee 130-CSL, London : E&FN Spon, 28-52.
- Seo, C.H. Lee, H.S. (2002). Mechanism and effect factors of carbonation in concrete, Proceedings of the Korea Concrete Institute Conference, 14(1), 2-12 [in Korean].
- Wierig, H.J. (1984). Longtime Studies on the Carbonation of Concrete Under Normal Outdoor Exposure, RILEM Seminar on Durability of Concrete Structures Under Normal Outdoor Exposure, Hannover, 239-249.
- Yang, J.W., Yoon, S.Y., Cho, H.K., Song, H., Lee, H.S. (2010). A study on the factors which influence on evaluating service life for carbonation of RC structures, KIEAE Journal,10(3), 103-110 [in Korean].