DOI QR코드

DOI QR Code

Development of Mineral Admixture for Concrete Using Spent Coffee Grounds

커피찌꺼기를 활용한 콘크리트 혼화재의 개발

  • 김성배 ((주)제이원산업) ;
  • 이재원 ((주)제이원산업) ;
  • 최윤석 ((재)한국건설생활환경시험연구원 건설기술연구센터)
  • Received : 2022.07.05
  • Accepted : 2022.07.19
  • Published : 2022.09.30

Abstract

Coffee is one of the most consumed beverages in the world and is the second largest traded commodity after petroleum. Due to the great demand of this product, large amounts of waste is generated in the coffee industry, which are toxic and represent serious environmental problems. This study aims to study the possibility of recycling spent coffee grounds (SCG) as a mineral admixture by replacing the cement in the manufacturing of concrete. To recycle the coffee g rounds, the SCG was dried to remove moisture and fired in a kiln at 850 ℃ for 8 hours. Carbonized coffee grounds are produced as coffee grounds ash (CGA) through ball mill grinding. The chemical composition of the prepared coffee grounds ash was investigated using X-ray fluorescence (XFR). According to the chemical composition analysis, the major elements of coffee grounds ash are K2O(51.74 %), CaO(15.92 %), P2O5(14.39 %), MgO(7.74 %) and SO3(6.89 %), with small amounts of F2O3(0.66 %), SiO2(0.59 %) and Al2O3(0.31 %) content. To evaluate quality and mechanical properties, substitutions of 5, 10, and 15 wt.% of coffee grounds ash (CGA) were tested. From the quality test results, the 28-day activity index of CGA5 reached 80 %, and the flow value ratio reached 96 %, which is comparable to the minimum requirement for second-grade FA. From the test results of the mortar, the optimal results have been found in specimens with 5 wt-% coffee grounds ash, showing good mechanical and physical properties.

커피는 세계에서 가장 많이 소비되는 음료 중 하나이며 석유에 이어 두 번째로 많이 거래되는 상품이다. 커피의 수요가 많은 만큼 커피 산업에서는 독성이 있고 심각한 환경문제를 일으키는 다량의 폐기물이 생성된다. 본 연구는 사용된 커피찌꺼기(SCG)를 재활용하여 콘크리트 제조 시 시멘트를 대체하는 혼화재로써의 활용가능성을 확인하는 것을 목표로 한다. 커피찌꺼기를 재활용하기 위해서 커피찌꺼기는 수분 제거를 위해 건조되고 850℃의 소성로에서 8시간 동안 소성하며, 탄화된 커피찌꺼기는 볼밀 분쇄를 통해 커피찌꺼기 애시(CGA)로 제조된다. 제조된 커피찌꺼기 애시의 화학성분 분석은 XRF로 수행하였으며, 화학성분 분석결과 커피찌꺼기 애시의 주요 성분은 K2O(51.74 %), CaO(15.92 %), P2O5(14.39 %)이며 MgO(7.74 %), SO3(6.89 %)의 부성분과 소량의 F2O3(0.66 %), SiO2(0.59 %), Al2O3(0.31 %)가 함량되어 있다. 물리 역학적 특성을 평가하기 위해 커피찌꺼기 애시를 5 %, 10 %, 15 % 중량 치환하여 수행하였다. 품질 시험결과, 커피찌꺼기 애시가 5 % 치환된 CGA 5의 28일 활성지수는 80 %이며, 플로 값 비는 96 %로 플라이 애시 2종의 품질기준을 만족하는 것으로 나타났다. 모르타르의 역학적 시험결과로부터 커피찌꺼기 5 %가 포함된 시편에서 최적의 결과를 확인할 수 있었으며, 우수한 기계적, 물리적 특성을 보여주었다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 국토교통기술촉진연구사업(22CTAP-C163675-02)의 연구비 지원에 의해 수행되었습니다.

References

  1. Almeida, A.C., Silva, M.A.L., Abreu, Q,C., Martins, A.L.S., Ribeiro, S.P., Pereira, S.S. (2019). Evaluation of partial sand replacement by coffee husks in concrete production, Journal of Environmental Science and Engineering B, 129-133.
  2. Andreola, F., Borghi, A., Pedrazzi, S., Allesina, G., Tartarini, P., Lancelloti, I., Barbieri, L. (2019). Spent coffee grounds in the production of lightweight clay ceramic aggregates in view of urban and agricultural sustainable development, Materials, 12(21), 1-11.
  3. Arulrajah, A., Maghoolpilehrood, F., Disfani, M.M., Horpibulsuk, S. (2014). Spent coffee grounds as a on-structural embankment fill material: engineering and environmental considerations, Journal of Cleaner Production, 72(11), 181-186. https://doi.org/10.1016/j.jclepro.2014.03.010
  4. Arulrajah, A., Kua, T.A., Phetchuay, C., Horpibulsuk, S. (2016). Spent coffee grounds-fly ash geopolymer used as an embankment structural fill material, Journal of Materials in Civil Engineering, 28(5), 1-8.
  5. Blinova, L., Sirotiale, M., Bartosova, A., Soldan, M. (2017). Utilization of waste from coffee production, Research Papers, Slovak University of Technology, Bratislava, 25(40), 91-101.
  6. Campos-Vega, R., Pina, G.L., Castaneda, H.V., Oomah, B.D. (2015). Spent coffee grounds: A review on current research and future prospects, Trends in Food Science & Technology, 45(1), 24-36. https://doi.org/10.1016/j.tifs.2015.04.012
  7. Eom, T,H., Kim, W.S., Kim, C.B., Jeon, B.Y., Lee, J.R. (2007). The influence of P2O5 on the clinker mineral composition and cement quality, Journal of the Korean Ceramic Society, 44(9), 483-488 [in Korean]. https://doi.org/10.4191/KCERS.2007.44.9.483
  8. Eliche-Quesada, D., Perez-Villarejo, L., Iglesias-Godino, F.J., Martinez-Garcia, C., Corpas-Iglesias, F.A. (2011). Incorporation of coffee grounds into clay brick production, Advances in Applied Ceramics, 110(4), 225-232. https://doi.org/10.1179/1743676111Y.0000000006
  9. Hardgrove, S.J., Livesley, S.J. (2016). Applying spent coffee grounds directly to urban agriculture soils greatly reduces plant growth, Urban Forestry & Urban Greening, 18(1), 1-8. https://doi.org/10.1016/j.ufug.2016.02.015
  10. Kim, C.M., Cha, W.H., Kim, S.S., Lee, M.H. (2002). The influence of P2O5 on clinker mineralization and cement quality, Cement Symposium, 29, 69-76 [in Korean].
  11. Kim, J.A., Kim, H.C., Baek, G.H., Lee, C.S. (2017). Anaerobic co-digestion of spent coffee grounds with different waste feedstocks for biogas production, Waste Management, 60, 322-328. https://doi.org/10.1016/j.wasman.2016.10.015
  12. Kim, M.J., Choi, S.W., Kim, H.W., Mun, S.G., Lee, K.B. (2020). Simple synthesis of spent coffee ground based microporous carbons using K2CO3 as an activation agent and their application to CO2 capture, Chemical Engineering Journal, 397, 1-11.
  13. Kua, T.A., Imteaz, M.A., Arulrajah, A., Horpibulsuk, S. (2019). Environmental and economic viability of alkali activated material(AAM) comprising slag, fly ash and spent coffee ground, International Journal of Sustainable Engineering, 12(4), 223-232. https://doi.org/10.1080/19397038.2018.1492043
  14. Mussatto, S.I., Machado, E.M,. Martins, S., Teixeira, J.A. (2011). Production, composition, and application of coffee and its industrial residues, Food and Bioprocess Technology, 4(5), 661-672. https://doi.org/10.1007/s11947-011-0565-z
  15. Nam, G., Kim, M.S., Ahn, J.W. (2017). Analyses for current research status for the coffee by-product and for status of coffee wastes in Seoul, Journal of Energy Engineering, 26(4), 14-22 [in Korean]. https://doi.org/10.5855/ENERGY.2017.26.4.014
  16. Namane, A., Mekarzia, A., Benrachedi, K., Bensemraa. N.B, Hellala, A. (2005). Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl2 and H3PO4, Journal of Hazardous Materials, 119(1-3), 189-194. https://doi.org/10.1016/j.jhazmat.2004.12.006
  17. Neves, L., Oliveira, R., Alves, M.M. (2006). Anaerobic co-digestion of coffee waste and sewage sludge, Waste Management, 26(2), 176-181. https://doi.org/10.1016/j.wasman.2004.12.022
  18. Prihadi, A.R., Maimulyanti, A. (2020). Chemical compounds of coffee ground and spent coffee ground for pharmaceutical products, Pharmaceutical and Biomedical Sciences Journal, 2(2), 1-4.
  19. Ros, M., Pascual, J.A., Garcia, C., Hernandez, M.T., Insam, H. (2006). Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts, Soil Biology and Biochemistry, 38(12), 3443-3452. https://doi.org/10.1016/j.soilbio.2006.05.017
  20. Santos, E.M., Macedo, L.M., Tundisi, L.L., Ataide, J.A., Camargo, G.A., Alves, R.C., Oliveira, M.B., Mazzola, P.G. (2021). Coffee by-products in topical formulations: A review, Trends in Food Science & Technology, 111, 280-291. https://doi.org/10.1016/j.tifs.2021.02.064
  21. Shin, J.H., Park, S.H., Kim, A.L., Son, Y.H., Joo, S.H. (2020). Changes in physical, chemical, and biological traits during composting of spent coffee grounds, Korean Journal of Environmental Agriculture, 39(3), 178-187 [in Korean]. https://doi.org/10.5338/KJEA.2020.39.3.21