DOI QR코드

DOI QR Code

Seismic response control of buildings using shape memory alloys as smart material: State-of-the-Art review

  • Eswar, Moka (Structural Engineering Division, CSIR - Central Building Research Institute) ;
  • Chourasia, Ajay (Structural Engineering Division, CSIR - Central Building Research Institute) ;
  • Gopalakrishnan, N. (Structural Engineering Division, CSIR - Central Building Research Institute)
  • 투고 : 2022.03.31
  • 심사 : 2022.08.04
  • 발행 : 2022.08.25

초록

Seismic response control has always been a grave concern with the damage and collapse of many buildings during the past earthquakes. While there are several existing techniques like base isolation, viscous damper, moment-resisting beam-column connections, tuned mass damper, etc., many of these are succumbing to either of large displacement, near-fault, and long-period earthquakes. Keeping this viewpoint, extensive research on the application of smart materials for seismic response control of buildings was attempted during the last decade. Shape Memory Alloy (SMA) with its unique properties of superelasticity and shape memory effect is one of the smart materials used for seismic control of buildings. In this paper, an exhaustive review has been compiled on the seismic control applications of SMA in buildings. Unique properties of SMA are discussed in detail and different phases of SMA along with crystal characteristics are illustrated. Consequently, various seismic control applications of SMA are discussed in terms of performance and compared with prevalent base isolators, bracings, beam-column connections, and tuned mass damper systems.

키워드

과제정보

The authors are grateful to the Director, CSIR- Central Building Research Institute, Roorkee for permitting to publish the paper. One of the authors, Mr. Moka Eswar, is also thankful to the Council of Scientific and Industrial Research (CSIR) for providing fellowship under CSIR-GATE-SRF (File No. 31/GATE/24(10)/2019-EMR-1).

참고문헌

  1. Alvandi, S. and Ghassemieh, M. (2014), "Application of shape memory alloys in seismic isolation: A review", Civil Eng. Infrastruct. J., 47(2), 153-171. https://dx.doi.org/10.7508/ceij.2014.02.001.
  2. Attanasi, G., Auricchio, F. and Fenves, G.L. (2009), "Feasibility assessment of an innovative isolation bearing system with shape memory alloys", J. Earthq. Eng., 13(S1), 18-39. https://doi.org/10.1080/13632460902813216.
  3. Buckle, I.G. and Mayes, R.L. (1990), "Seismic isolation: history, application, and performance-A world view", Earthq. Spectra, 6(2), 161-201. https://doi.org/10.1193/1.1585564.
  4. Buehler, W.J., Gilfrich, J.V. and Wiley, R.C. (1963), "Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi", J. Appl. Physics, 34(5), 1475-1477. https://doi.org/10.1063/1.1729603.
  5. Buehler, W.J. and Wang, F.E. (1968), "A summary of recent research on the nitinol alloys and their potential application in ocean engineering", Ocean Eng., 1(1), 105-120. https://doi.org/10.1016/0029-8018(68)90019-X.
  6. Cardone, D. (2012), "Re-centring capability of flag-shaped seismic isolation systems", Bulletin Earthq. Eng., 10(4), 1267-1284. https://doi.org/10.1007/s10518-012-9343-1.
  7. Casciati, F., Faravelli, L. and Hamdaoui, K. (2007), "Performance of a base isolator with shape memory alloy bars", Earthq. Eng. Eng. Vib., 6(4), 401-408. https://doi.org/10.1007/s11803-007-0787-2.
  8. Chen, P.-C., Tsai, K.-C. and Lin, P.-Y. (2014), "Real-time hybrid testing of a smart base isolation system", Earthq. Eng. Struct. Dynam., 43(1), 139-158. https://doi.org/10.1002/eqe.2341.
  9. Chernenko, V.A., Cesari, E., Kokorin, V.V. and Vitenko, I.N. (1995), "The development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system", Scripta Metallurgica et Materiala, 33(8), 1239-1244. https://doi.org/10.1016/0956-716X(95)00370-B.
  10. Connor, J.J. (2003), Introduction to Structural Motion Control, Prentice Hall Pearson Education, NJ, USA.
  11. Cortes-Puentes, W.L. and Palermo, D. (2018), "Seismic retrofit of concrete shear walls with SMA tension braces", J. Struct. Eng., 144(2), 04017200. https://doi.org/10.1061/(asce)st.1943-541x.0001936.
  12. DesRoches, R. and Smith, B. (2004), "Shape memory alloys in seismic resistant design and retrofit: A critical review of their potential and limitations", J. Earthq. Eng., 8(3), 415-429. https://doi.org/10.1080/13632460409350495.
  13. DesRoches, R., Taftali, B. and Ellingwood, B.R. (2010), "Seismic performance assessment of steel frames with shape memory alloy connections. Part I analysis and seismic demands", J. Earthq. Eng., 14(4), 471-486. https://doi.org/10.1080/13632460903301088.
  14. Dezfuli, F.H. and Alam, M.S. (2014), "Performance-based assessment and design of FRP-based high damping rubber bearing incorporated with shape memory alloy wires", Eng. Struct., 61, 166-183. https://doi.org/10.1016/j.engstruct.2014.01.008.
  15. Eisenberger, M. and Rutenberg, A. (1986), "Seismic base isolation of asymmetric shear buildings", Eng. Struct., 8(1), 2-8. https://doi.org/10.1016/0141-0296(86)90013-1.
  16. Elbahy, Y.I., Youssef, M.A. and Meshaly, M. (2019), "Seismic performance of reinforced concrete frames retrofitted using external superelastic shape memory alloy bars", Bulletin Earthq. Eng., 17(2), 781-802. https://doi.org/10.1007/s10518-018-0477-7.
  17. Fang, C., Wang, W., Ricles, J., Yang, X., Zhong, Q., Sause, R. and Chen, Y. (2018), "Application of an innovative SMA ring spring system for self-centering steel frames subject to seismic conditions", J. Struct. Eng., 144(8), 04018114. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002127.
  18. Fu, W., Zhang, C., Li, M. and Duan, C. (2019), "Experimental investigation on semi-active control of base isolation system using magnetorheological dampers for concrete frame structure", Appl. Sci., 9(18), 3866. https://doi.org/10.3390/app9183866.
  19. Gao, N., Jeon, J.S., DesRoches, R. and Hodgson, D.E. (2016), "Numerical model of an innovative damping system using superelastic shape memory alloy rings", Proceedings of the Joint Geotechnical and Structural Engineering Congress 2016, Phoenix, Arizona, February. https://doi.org/10.1061/9780784479742.019.
  20. Gu, X., Yu, Y., Li, Y., Li, J., Askari, M. and Samali, B. (2019), "Experimental study of semi-active magnetorheological elastomer base isolation system using optimal neuro fuzzy logic control", Mech. Syst. Signal Processing, 119, 380-398. https://doi.org/10.1016/j.ymssp.2018.10.001.
  21. Guo, T., Xu, W., Song, L. and Wei, L. (2014), "Seismic-isolation retrofits of school buildings: Practice in China after recent devastating earthquakes", J. Performance Construct. Facilities, 28(1), 96-107. https://doi.org/10.1061/(asce)cf.1943-5509.0000411.
  22. Gur, S., Mishra, S.K. and Chakraborty, S. (2014), "Performance assessment of buildings isolated by shape-memory-alloy rubber bearing: Comparison with elastomeric bearing under near-fault earthquakes", Struct. Control Health Monitoring, 21(4), 449-465. https://doi.org/10.1002/stc.1576.
  23. Hosseini, R., Rashidi, M., Bulajic, B.D. and Arani, K.K. (2020), "Multi-objective optimization of three different SMA-LRBs for seismic protection of a benchmark highway bridge against real and synthetic ground motions", Appl. Sci., 10(12), 4076. https://doi.org/10.3390/app10124076.
  24. Huang, B., Lao, Y., Chen, J. and Song, Y. (2018a), "Dynamic response analysis of a frame structure with superelastic nitinol SMA helical spring braces for vibration reduction", J. Aerosp. Eng., 31(6), 04018096. https://doi.org/10.1061/(asce)as.1943-5525.0000923.
  25. Huang, B., Song, Y., Wu, Y., Lao, Y. and Song, G. (2018b), "Experimental analysis of the pseudoelasticity of nitinol shape memory alloy helical springs", Earth and Space 2018: Engineering for Extreme Environments - Proceedings of the 16th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments, Cleveland, Ohio, April. https://doi.org/10.1061/9780784481899.080.
  26. Huang, H., Mosalam, K.M. and Chang, W.S. (2020), "Adaptive tuned mass damper with shape memory alloy for seismic application", Eng. Struct., 223, 111171. https://doi.org/10.1016/j.engstruct.2020.111171.
  27. Izadi, M.R., Ghafoori, E., Shahverdi, M., Motavalli, M. and Maalek, S. (2018), "Development of an iron-based shape memory alloy (Fe-SMA) strengthening system for steel plates", Eng. Struct., 174, 433-446. https://doi.org/10.1016/j.engstruct.2018.07.073.
  28. Jani, M.J., Leary, M., Subic, A. and Gibson, M.A. (2014), "A review of shape memory alloy research, applications and opportunities", Mater. Design (1980-2015), 56, 1078-1113. https://doi.org/10.1016/j.matdes.2013.11.084.
  29. Kaynia, A.M., Veneziano, D. and Biggs, J.M. (1981), "Seismic Effectiveness of Tuned Mass Dampers", J. Struct. Division, 107(8), 1465-1484. https://doi.org/10.1061/JSDEAG.0005760.
  30. Khader, S.A., Naish, D. and Lanning, J. (2017), "Experimental evaluation and development of a self-centering friction damping brace", Structures Congress 2017: Bridges and Transportation Structures, Denver, Colorado, April. https://doi.org/10.1061/9780784480403.032.
  31. Lee, D. and Taylor, D.P. (2001), "Viscous damper development and future trends", Struct. Design Tall Buildings, 10(5), 311-320. https://doi.org/10.1002/tal.188.
  32. Li, Y. and Li, J. (2019), "Overview of the development of smart base isolation system featuring magnetorheological elastomer", Smart Struct. Syst., 24(1). https://doi.org/doi.org/10.12989/sss.2019.24.1.000.
  33. Mantovani, D. (2000), "Shape memory alloys: Properties and biomedical applications", JOM, 52, 36-44. https://doi.org/10.1007/s11837-000-0082-4.
  34. Matsagar, V.A. and Jangid, R.S. (2008), "Base isolation for seismic retrofitting of structures", Practice Periodical Struct. Design Construct., 13(4), https://doi.org/10.1061/(asce)1084-0680(2008)13:4(175).
  35. McCormick, J., Tyber, J., DesRoches, R., Gall, K. and Maier, H.J. (2007), "Structural engineering with NiTi. II: Mechanical behavior and scaling", J. Eng. Mech., 133(9), 1019-1029. https://doi.org/10.1061/(asce)0733-9399(2007)133:9(1019).
  36. Melton, K.N. and Mercier, O. (1981), "The mechanical properties of NiTi-based shape memory alloys", Acta Metallurgica, 29(2), 393-398. https://doi.org/10.1016/0001-6160(81)90165-6.
  37. Mishra, S.K., Gur, S. and Chakraborty, S. (2013), "An improved tuned mass damper (SMA-TMD) assisted by a shape memory alloy spring", Smart Mater. Struct., 22(9). https://doi.org/10.1088/0964-1726/22/9/095016.
  38. Miyazaki, S. and Otsuka, K. (1989), "Development of shape memory alloys", ISIJ International, 29(5), 353-377. https://doi.org/10.2355/isijinternational.29.353.
  39. Moradi, S. and Alam, M.S. (2015), "Feasible application of shape memory alloy plates in steel beam-column connections", Structures Congress 2015, Portland, Oregon, April. https://doi.org/10.1061/9780784479117.180.
  40. Motahari, S.A. and Ghassemieh, M. (2007), "Multilinear onedimensional shape memory material model for use in structural engineering applications", Eng. Struct., 29(6), 904-913. https://doi.org/10.1016/j.engstruct.2006.06.007.
  41. Naeem, A., Eldin, M.N., Kim, J. and Kim, J. (2017), "Seismic performance evaluation of a structure retrofitted using steel slit dampers with shape memory alloy bars", J. Steel Struct., 17(4), 1627-1638. https://doi.org/10.1007/s13296-017-1227-4.
  42. Ocel, J., DesRoches, R., Leon, R.T., Hess, W.G., Krumme, R., Hayes, J.R. and Sweeney, S. (2004), "Steel beam-column connections using shape memory alloys", J. Struct. Eng., 130(5), 732-740. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:5(732).
  43. Olander, A. (1932), "An electrochemical investigation of solid cadmium-gold alloys", J. American Chem. Soc., 54(10), 3819-3833. https://doi.org/10.1021/ja01349a004.
  44. Ortin, J. and Delaey, L. (2002), "Hysteresis in shape-memory alloys", J. Non-linear Mech., 37(8), 1275-1281. https://doi.org/10.1016/S0020-7462(02)00027-6.
  45. Ozbulut, O.E. and Hurlebaus, S. (2010a), "Neuro-fuzzy modeling of temperature- and strain-rate-dependent behavior of NiTi shape memory alloys for seismic applications", J. Intelligent Mater. Syst. Struct., 21(8), 837-849. https://doi.org/10.1177/1045389X10369720.
  46. Ozbulut, O.E. and Hurlebaus, S. (2010b), "Evaluation of the performance of a sliding-type base isolation system with a NiTi shape memory alloy device considering temperature effects", Eng. Struct., 32(1), 238-249. https://doi.org/10.1016/j.engstruct.2009.09.010.
  47. Ozbulut, O.E., Hurlebaus, S. and Desroches, R. (2011), "Seismic response control using shape memory alloys: A review", J. Intelligent Mater. Syst. Struct., 22(14), 1531-1549. https://doi.org/10.1177/1045389X11411220.
  48. Ozbulut, O.E. and Silwal, B. (2014), "Performance of isolated buildings with superelastic-friction base isolators under high seismic hazard", Structures Congress 2014, Boston, United States, April. https://doi.org/10.1061/9780784413357.173.
  49. Parulekar, Y.M., Kiran, A.R., Reddy, G.R., Singh, R.K. and Vaze, K.K. (2014), "Shake table tests and analytical simulations of a steel structure with shape memory alloy dampers", Smart Mater. Struct., 23(12), 125002. https://doi.org/10.1088/0964-1726/23/12/125002.
  50. Parulekar, Y.M., Reddy, G.R., Vaze, K.K., Guha, S., Gupta, C., Muthumani, K. and Sreekala, R. (2012), "Seismic response attenuation of structures using shape memory alloy dampers", Struct. Control Health Monitoring, 19(1), 102-119. https://doi.org/10.1002/stc.428.
  51. Patoor, E., Lagoudas, D.C., Entchev, P.B., Brinson, L.C. and Gao, X. (2006), "Shape memory alloys, Part I: General properties and modeling of single crystals", Mech. Mater., 38(5-6), 391-429. https://doi.org/10.1016/j.mechmat.2005.05.027.
  52. Planes, A. and Manosa, L. (2001), "Vibrational properties of shape-memory alloys", Solid State Phys., 55, 159-267. https://doi.org/10.1016/S0081-1947(01)80005-9.
  53. Rabiee, R. and Chae, Y. (2019), "Adaptive base isolation system to achieve structural resiliency under both short- and long-period earthquake ground motions", J. Intelligent Mater. Syst. Struct., 30(1), 16-31. https://doi.org/10.1177/1045389X18806403.
  54. Robinson, W.H. (2011), "Lead-rubber hysteretic bearings suitable for protecting structures during earthquakes", Seismic Isolation Protective Syst., 2(1), 5-19. https://doi.org/10.2140/siaps.2011.2.5.
  55. Saiidi, M.S., Sadrossadat-Zadeh, M., Ayoub, C. and Itani, A. (2007), "Pilot study of behavior of concrete beams reinforced with shape memory alloys", J. Mater. Civil Eng., 19(6), 454-461. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:6(454).
  56. Sato, A., Kubo, H. and Maruyama, T. (2006), "Mechanical properties of Fe-Mn-Si based SMA and the application", Mater. Transactions, 47(3), 571-579. https://doi.org/10.2320/matertrans.47.571.
  57. Shrimali, M.K. and Jangid, R.S. (2002), "Seismic response of liquid storage tanks isolated by sliding bearings", Eng. Struct., 24(7), 909-921. https://doi.org/10.1016/S0141-0296(02)00009-3.
  58. Skinner, R.I., Kelly, J.M. and Heine, A.J. (1974), "Hysteretic dampers for earthquake-resistant structures", Earthq. Eng. Struct. Dynam., 3(3), 287-296. https://doi.org/10.1002/eqe.4290030307.
  59. Sladek, J.R. and Klingner, R.E. (1983), "Effect of tuned-mass dampers on seismic response", J. Struct. Eng., 109(8), 2004-2009. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:8(2004).
  60. Sutou, Y., Omori, T., Kainuma, R. and Ishida, K. (2008), "Ductile Cu-Al-Mn based shape memory alloys: general properties and applications", Mater. Sci. Technol., 24(8), 896-901. https://doi.org/10.1179/174328408X302567.
  61. Tazarv, M. and Saiidi, M.S. (2015), "Reinforcing NiTi superelastic SMA for concrete structures", J. Struct. Eng., 141(8), 04014197. https://doi.org/10.1061/(asce)st.1943-541x.0001176.
  62. Tyber, J., McCormick, J., Gall, K., DesRoches, R., Maier, H.J. and Abdel Maksoud, A.E. (2007), "Structural engineering with NiTi. I: Basic materials characterization", J. Eng. Mech., 133(9), 1009-1018. https://doi.org/10.1061/(asce)0733-9399(2007)133:9(1009).
  63. Umachagi, V., Venkataramana, K., Reddy, G.R. and Verma, R. (2013), "Applications of dampers for vibration control of structures: An overview", J. Res. Eng. Technol., 02(13), 6-11. https://doi.org/10.15623/ijret.2013.0213002.
  64. Vernon, L.B. and Vernon, H.M. (1941), "Process of manufacturing articles of thermoplastic synthetic resins", US124460A; United States Patent Office (No. 124460).
  65. Wang, B. and Zhu, S. (2018), "Superelastic SMA U-shaped dampers with self-centering functions", Smart Mater. Struct., 27(5), 055003. https://doi.org/10.1088/1361-665X/aab52d.
  66. Wang, B., Zhu, S. and Casciati, F. (2020a), "Experimental study of novel self-centering seismic base isolators incorporating superelastic shape memory alloys", J. Struct. Eng., 146(7), 04020129. https://doi.org/10.1061/(asce)st.1943-541x.0002679.
  67. Wang, W., Fang, C., Feng, W., Ricles, J., Sause, R. and Chen, Y. (2020b), "SMA-based low-damage solution for self-centering steel and composite beam-to-column connections", J. Struct. Eng., 146(6), 04020092. https://doi.org/10.1061/(asce)st.1943-541x.0002649.
  68. Wang, W., Fang, C. and Liu, J. (2017), "Self-centering beam-tocolumn connections with combined superelastic SMA bolts and steel angles", J. Struct. Eng., 143(2), 04016175. https://doi.org/10.1061/(asce)st.1943-541x.0001675.
  69. Wesolowsky, M.J. and Wilson, J.C. (2004), "Controlling seismic response with shape memory alloy devices", 13th World Conference on Earthquake Engineering, Vancouver, Canada, August.
  70. Zafar, A. and Andrawes, B. (2014), "Fabrication and cyclic behavior of highly ductile superelastic shape memory composites", J. Mater. Civil Eng., 26(4), 622-632. https://doi.org/10.1061/(asce)mt.1943-5533.0000797.
  71. Zareie, S. and Zabihollah, A. (2020), "Hysteresis behavior of prestrained shape memory alloy wires subject to cyclic loadings: An experimental investigation", Emerging Trends in Mechatronics, IntechOpen, London, United Kingdom. https://doi.org/10.5772/intechopen.88452.
  72. Zhou, Z., Xie, Q., Meng, S.P., Wang, W.Y. and He, X.T. (2016), "Hysteretic performance analysis of self-centering buckling restrained braces using a rheological model", J. Eng. Mech., 142(6), 04016032. https://doi.org/10.1061/(asce)em.1943-7889.0001080.
  73. Zhu, S. and Zhang, Y. (2008), "Seismic analysis of concentrically braced frame systems with self-centering friction damping braces", J. Struct. Eng., 134(1), 121-131. https://doi.org/10.1061/(asce)0733-9445(2008)134:1(121).