참고문헌
- Ahadpour Khaneghah, M.R., Mohammadi Dehcheshmeh, E. and Broujerdian, V. (2021), "Optimized design and investigation of cyclic behavior of dual intermediate steel moment resisting system equipped with self-centering buckling restrained 2-story-X-brace", Sharif J. Civil Eng., 37(2.1), https://doi.org/51-60. 10.24200/J30.2020.55635.2758.
- AISC360 (2016), Specification for Structural Steel Buildings, American National Standard; Chicago, Illinois, USA.
- ANSI/AISC 341-10 (2005), Seismic Provisions for Structural Steel Buildings (Including Supplement No. 1), American Institute of Steel Construction; Chicago, USA.
- ASCE/SEI 7-10 (2016), Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers; Washington, USA.
- Beiraghi, H. and Alinaghi, A. (2021), "Performance based assessment for tall core structures consisting of buckling restrained braced frames and RC walls", Earthq. Struct., 21(5), 515-530. https://doi.org/10.12989/eas.2021.21.5.515.
- Black, C.J., Makris, N. and Aiken, I.D. (2004), "Component testing, seismic evaluation and characterization of bucklingrestrained braces", J. Struct. Eng., 130(6), 880-894. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:6(880).
- Chancellor, N.B., Eatherton, M.R., Roke, D.A. and Akbas, T. (2014), "Self-centering seismic lateral force resisting systems: High performance structures for the city of tomorrow", Buildings, 4(3), 520-548. https://doi.org/10.3390/buildings4030520.
- Chou, C.C. and Chung, P.T. (2014), "Development of crossanchored dual-core self-centering braces for seismic resistance", J. Construct. Steel Res., 101, 19-32. https://doi.org/10.1016/j.jcsr.2014.04.035
- Christopoulos, C., Tremblay, R., Kim, H. and Lacerte, M. (2008), "Self-centering energy dissipative bracing system for the seismic resistance of structures: Development and validation", J. Struct. Eng., 134(1), 96-107. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(96).
- Deng, K., Pan, P., Lam, A., Pan, Z. and Ye, L. (2013), "Test and simulation of full-scale self-centering beam-to-column connection", Earthq. Eng. Eng. Vib., 12(4), 599-607. https://doi.org/10.1007/s11803-013-0200-2.
- Deng, K., Pan, P., Li, W. and Xue, Y. (2015), "Development of a buckling restrained shear panel damper", J. Construct. Steel Res., 106, 311-321. https://doi.org/10.1016/j.jcsr.2015.01.004.
- Dereje, J.A., Eldin, M.N. and Kim, J. (2021), "Seismic retrofit of a soft first story structure using an optimally designed posttensioned PC frame", Earthq. Struct., 20(6), 627-637. https://doi.org/10.12989/eas.2021.20.6.000.
- Dongbin, Z., Xin, N., Peng, P., Mengzi, W., Kailai, D. and Yabin, C. (2016), "Experimental study and finite element analysis of a buckling-restrained brace consisting of three steel tubes with slotted holes in the middle tube", J. Construct. Steel Res., 124, 1-11. https://doi.org/10.1016/j.jcsr.2016.05.003.
- Dougka, G., Dimakogianni, D. and Vayas, I. (2014), "Seismic behavior of frames with innovative energy dissipation systems (FUSEIS 1-1)", Earthq. Struct., 6(5), 561-580. https://doi.org/10.12989/eas.2014.6.5.561.
- Eatherton, M. R., Ma, X., Krawinkler, H., Mar, D., Billington, S., Hajjar, J. F. and Deierlein, G.G. (2014), "Design concepts for controlled rocking of self-centering steel-braced frames", J. Struct. Eng., 140(11), 04014082. https://doi.org/10.1061/(asce)st.1943-541x.0001047.
- Eatherton, M.R., Fahnestock, L.A. and Miller, D.J. (2014), "Computational study of self-centering buckling-restrained braced frame seismic performance.", Earthq. Eng. Struct. Dynam., 43(13), 1897-1914. https://doi.org/10.1002/eqe.2428.
- El-Sheikh, M.T., Sause, R., Pessiki, S. and Lu, L. (1999), "Seismic behavior and design of unbonded post-tensioned precast concrete frames", PCI J., 44(3), 54-71. https://doi.org/10.15554/pcij.05011999.54.71
- Erochko, J., Christopoulos, C. and Tremblay, R. (2015), "Design, testing, and detailed component modeling of a high-capacity self-centering energy-dissipative brace", J. Struct. Eng., 141(8), 04014193. https://doi.org/10.1061/(asce)st.1943-541x.0001166.
- Erochko, J., Christopoulos, C., Tremblay, R. and Choi, H. (2011), "Residual drift response of SMRFS and BRB frames in steel buildings designed according to ASCE 7-05", J. Struct. Eng., 137(5), 589-599. https://doi.org/10.1061/(asce)st.1943-541x.0000296.
- Filippou, F.C., Popov, E.P. and Bertero, V.V. (1983), "Effects of bond deterioration on hysteretic behavior of reinforced concrete joints", UCB/EERC-83/19; University of California.
- Herning, G., Garlock, M.M., Ricles, J., Sause, R. and Li, J. (2009), "An overview of self-centering steel moment frames", Proceedings of the 2009 Structures Congress, Austin, Texas, United States, April. https://doi.org/10.1061/41031(341)154.
- Hoveidae, N. (2019), "Multi-material core as self-centering mechanism for buildings incorporating BRBs", Earthq. Struct., 16(5), 589-599. https://doi.org/10.12989/eas.2019.16.5.589.
- Izzuddin, B.A. (1991), "Nonlinear dynamic analysis of framed structures.", Ph.D. Dissertation, Imperial College of Science and Technology, London.
- Izzuddin, B.A., Karayannis, C.G. and Elnashai, A.S. (1994), "Advanced nonlinear formulation for reinforced concrete beamcolumns", J. Struct. Eng., 120(10), 2913-2934. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:10(2913).
- Kamaludin, P.N.C., Kassem, M.M., Farsangi, E.N., Nazri, F.M. and Yamaguchi, E. (2020), "Seismic resilience evaluation of RC-MRFs equipped with passive damping devices", Earthq. Struct., 18(3), 391-405. https://doi.org/10.12989/eas.2020.18.3.391.
- Karayannis, C.G., Izzuddin, B.A. and Elnashai, A.S. (1994), "Application of adaptive analysis to reinforced concrete frames.", J. Struct. Eng., 120(10), 2935-2957. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:10(2935).
- Khorami, M., Alvansazyazdi, M., Shariati, M., Zandi, Y., Jalali, A. and Tahir, M.M. (2017a), "Seismic performance evaluation of buckling restrained braced frames (BRBF) using incremental nonlinear dynamic analysis method (IDA)", Earthq. Struct., 13(6), 531-538. https://doi.org/10.12989/eas.2017.13.6.531.
- Kiggins, S. and Uang, C.M. (2006), "Reducing residual drift of buckling-restrained braced frames as a dual system", Eng. Struct., 28(11), 1525-1532. https://doi.org/10.1016/j.engstruct.2005.10.023.
- Kim, J. and Choi, H. (2004), "Behavior and design of structures with buckling-restrained braces", Eng. Struct., 26(6), 693-706. https://doi.org/10.1016/j.engstruct.2003.09.010.
- Kurama, Y., Pessiki, S., Sause, R. and Lu, L.W. (1999), "Seismic behavior and design of unbonded post-tensioned precast concrete walls", PCI J., 44(3), 72-89. https://doi.org/10.15554/pcij.05011999.72.89.
- Kurama, Y., Sause, R., Pessiki, S. and Lu, L.W. (1999), "Lateral Load Behavior and Seismic Design of Unbonded Post- Tensioned Precast Concrete Walls", ACI Structural J., 96(4), 622-632. https://doi.org/10.14359/700.
- Miller, D.J., Fahnestock, L.A. and Eatherton, M.R. (2012), "Development and experimental validation of a nickel-titanium shape memory alloy self-centering buckling-restrained brace", Eng. Struct., 40, 288-298. https://doi.org/10.1016/j.engstruct.2012.02.037.
- Patel, C.C., Jangid, R.S. (2011), "Dynamic response of adjacent structures connected by friction damper", Earthq. Struct., 2(2), 149-169. https://doi.org/10.12989/eas.2011.2.2.149.
- Patel, C.C., Jangid, R.S. (2013), "Dynamic response of identical adjacent structures connected by viscous damper", Struct. Controland Health Monitoring, 21(2), 205-224. https://doi.org/10.1002/stc.1566.
- Priestley, M.J.N. (1991), "Overview of PRESSS research program", PCI J., 36(4), 50-57. https://doi.org/10.15554/pcij.07011991.50.57
- Sabelli, R., Mahin, S. and Chang, C. (2003), "Seismic demands on steel braced frame buildings with buckling-restrained braces", Eng. Struct., 25(5), 655-666. https://doi.org/10.1016/S0141-0296(02)00175-X.
- Uang, C.M., Nakashima, M. and Tsai, K.C. (2004), "Research and application of buckling-restrained braced frames", Int. J. Steel Struct., 4(4), 301-313.
- Wang, H., Nie, X. and Pan, P. (2017), "Development of a selfcentering buckling restrained brace using cross-anchored prestressed steel strands", J. Construct. Steel Res., 138, 621-632. https://doi.org/10.1016/j.jcsr.2017.07.017.
- Xie, Q. (2005), "State of the art of buckling-restrained braces in Asia", J. Construct. Steel Res., 61(6), 727-748. https://doi.org/10.1016/j.jcsr.2004.11.005.
- Zhou, Y., Shao, H., Cao, Y. and Lui, E.M. (2021), "Application of buckling-restrained braces to earthquake-resistant design of buildings: A review", Eng. Struct., 246, 112991. https://doi.org/10.1016/j.engstruct.2021.112991.
- Zhou, Z., Xie, Q., Lei, X.C., He, X.T. and Meng, S.P. (2015), "Experimental investigation of the hysteretic performance of dual-tube self-centering buckling-restrained braces with composite tendons", J. Compos. Construct., 19(6), 04015011. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000565
- Zhu, S. and Zhang, Y. (2008), "Seismic analysis of concentrically braced frame systems with self-centering friction damping braces", J. Struct. Eng., 134(1), 121-131. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(121).