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Introduction 

Ovarian aging leads to a decline in both the quantity and quality 
of oocytes, negatively impacting the formation of genetically normal 
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Objective: Platelet-rich plasma (PRP) therapy has received a considerable attention as an adjunct to fertility treatments, especially in women 
with very low ovarian reserve and premature ovarian insufficiency. Although recent studies have demonstrated that PRP led to improve-
ments in folliculogenesis and biomarkers of ovarian reserve, the effect of intraovarian PRP administration on embryo genetics has not been 
studied.
Methods: We report a pilot study of patients who had preimplantation genetic testing for aneuploidy (PGT-A) before and then within 3 
months following PRP administration. Twelve infertile women with at least one prior failed in vitro fertilization (IVF) cycle underwent ovarian 
stimulation (cycle 1) with a gentle stimulation protocol and PGT-A performed at the blastocyst stage. Following cycle 1, autologous intraovar-
ian PRP administration was performed. Within 3 months following PRP administration, the patients underwent cycle 2 and produced blasto-
cysts for PGT-A. The percentage of euploid embryos between both cycles was compared. 
Results: The mean age of all participants was 40.08±1.46 years, and their mean body mass index was 26.18±1.18 kg/m2. The number of 
good-quality embryos formed at the blastocyst stage was similar between cycle 1 and cycle 2 (3.08±0.88 vs. 2.17±0.49, respectively; p=0.11). 
Among all patients in cycle 1, 3 of 37 embryos were euploid (8.11%) while in cycle 2, 11 out of 28 embryos were euploid (39.28%, p=0.002). 
Three clinical pregnancies were noted among this patient group. 
Conclusion: This novel study is the first to present an improvement in the embryo euploidy rate following intraovarian PRP application in in-
fertile women with prior failed IVF cycles. The growth factors present in PRP may exhibit a local paracrine effect that could improve meiotic 
aberrations in human oocytes and thus improve euploidy rates. Whether PRP improves live birth rates and lowers miscarriage rates remains 
to be determined in large trials. 
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(euploid) embryos during in vitro fertilization (IVF) treatment and in-
creasing the frequency of miscarriage [1]. The aging process leads to 
cellular and molecular events such as disturbances in mitochondrial 
dynamics and mRNA storage, translation, and degradation within 
the oocytes, all of which contribute to meiotic aberrations [1]. 

Platelet-rich plasma (PRP) is derived from whole blood, which con-
tains plasma (55%), red blood cells (41%), platelets and white blood 
cells (4%), by centrifugation and separation of its different compo-
nents [2]. The centrifugation and separation process leads to the re-
moval of red blood cells and the production of plasma with 5–10 
times higher concentrations of growth factors. The platelets present 
in PRP contain alpha granules that, when activated, release many 
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factors that contribute to growth, cell proliferation, and angiogenesis 
[3]. The growth factors present in PRP have been shown to play an 
important role in enhancing collagen synthesis, proliferation of bone 
cells, fibroblast chemotaxis, macrophage activation, angiogenesis, 
chemotaxis of immune cells, migration and mitosis of endothelial 
cells, differentiation of epithelial cells, and cytokine secretion by mes-
enchymal and epithelial cells [2]. 

Autologous PRP therapy uses injections of the patient's own con-
centrated platelets and plasma following a venous blood draw. The 
theory behind using this modality for treatment stemmed from the 
natural healing process being the body’s initial response to tissue in-
jury by delivering activated platelets and releasing growth factors. 
The clinical use of PRP has considerably increased over the last de-
cade, and now includes treatments for musculoskeletal injuries [4-6] 
arthritis [7], periorbital rejuvenation [8], pancreatic problems [9], 
dentistry [10], wound healing [11], alopecia [12], and infertility [13]. 
PRP treatment has recently been used as an adjunct in assisted re-
production technology, in particular, as an intraovarian injection in 
conjunction with IVF for women who have poor ovarian reserve, pre-
mature ovarian insufficiency, and even menopause [14-18]. 

Recent data have shown that intraovarian PRP treatment led to 
improvement in markers of ovarian reserve such as serum an-
ti-Müllerian hormone (AMH), a marker of ovarian reserve, and in-
creased oocyte yield with IVF [19]. Although recent studies have 
demonstrated that PRP led to improvements in folliculogenesis and 
biomarkers of ovarian reserve, the effect of intraovarian PRP admin-
istration on embryo genetics has not been studied, except for one 
case report that demonstrated qualitative improvement in embryo 
genetics after intraovarian injection of autologous PRP [20]. We re-
port a pilot study of patients who had preimplantation genetic test-
ing for aneuploidy (PGT-A) before and then within 3 months follow-
ing intraovarian PRP administration. 

Methods 

1. Participants 
The participants underwent infertility treatment at Rejuvenating 

Fertility Center. Infertility was defined as an inability to conceive with 
unprotected intercourse after 1 year for women aged < 35 years, 
and after 6 months for women aged > 35 years. Women with any 
medical condition that interfered with fertility treatment were ex-
cluded from the study. The inclusion criteria were women with at 
least one previous failed IVF cycle and women who produced fully 
developed embryos (blastocysts) before and after intraovarian PRP 
administration (n = 12). Each participant underwent two IVF cycles: 
the first (cycle 1) was followed by intraovarian PRP administration, 
after which a second IVF cycle (cycle 2) took place within 3 months 

following the PRP administration. Informed consent was obtained 
from all patients and the study was approved by the New England 
Institutional Review Board (NEIRB; No. 120180241). 

2. IVF protocols 
The IVF cycles 1 and 2 performed in the same participants used 

similar ovarian stimulation protocols. In brief, in each cycle, after oral 
contraceptive pill pre-treatment for approximately 2–3 weeks and 
adequate suppression, minimal/mild ovarian stimulation was started 
with an extended regimen (from cycle day 3 until the day before 
triggering) of clomiphene citrate (50 mg/day orally) in conjunction 
with letrozole (2.5 mg/day orally) with low-dose gonadotropin (75 IU 
daily) injections (Follistim, Merck, White House Station, NJ, USA; or 
Gonal F, EMD Serono, Rockland, MA, USA). 

Hypothalamic-pituitary suppression using a gonadotropin-releas-
ing hormone (GnRH) antagonist was conducted to prevent ovula-
tion. The final maturation of oocytes was induced by a GnRH agonist 
or by human chorionic gonadotropin trigger when the lead follicle 
was >  18 mm. The retrieved oocytes were fertilized by intracytoplas-
mic sperm injection as clinically indicated. All embryos were cultured 
until the blastocyst stage followed by trophectoderm biopsies for 
PGT-A and then vitrified to be transferred in a subsequent frozen em-
bryo transfer cycle. 

3. Intraovarian PRP administration 
PRP was prepared as we previously described [21,22]. Approxi-

mately 32 mL of blood was collected from the patient by peripheral 
venipuncture. The blood sample was placed in a room-temperature 
centrifuge set to 1,500 × g for 5 minutes. After centrifugation, the up-
per layer, corresponding to relatively platelet-poor plasma, was aspi-
rated and discarded, after which the PRP layer was aspirated and 
placed in a separate tube for a second round of centrifugation, and 
the lower level corresponding to red blood cells was discarded. The 
process was repeated a second time. A total of 8 mL of PRP was col-
lected from the tubes, and no activators were used. Under intrave-
nous sedation and transvaginal ultrasound guidance, intraovarian in-
jection of approximately 4 mL of PRP per ovary was performed. The 
injection was performed in multifocal spots, and diffusion of the PRP 
in the subcortical layers was achieved by applying 5–7 punctures per 
ovary transvaginally using a 22-gauge needle and guide. The patients 
tolerated the procedure well and were discharged home. 

4. Statistical analysis 
Because the data were normally distributed, we used the paired 

t-test to compare continuous clinical data between cycles 1 and 2. 
The chi-square test was used to compare the proportion of euploid 
embryos between cycles 1 and 2. The statistical analysis was con-
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ducted using GraphPad Prism statistical software (GraphPad Soft-
ware, San Diego, CA, USA), and a p-value of < 0.05 was considered 
statistically significant. 

Results

The mean age of all participants was 40.08 ± 1.46 years, and their 
mean body mass index was 26.18 ± 1.18 kg/m2. When comparing 
clinical data between cycle 1 and cycle 2, statistically significance dif-
ferences were not found for serum follicle-stimulating hormone lev-
els (7.98 ± 1.01 mIU/mL vs. 8.45 ± 1.55 mIU/mL, respectively; 
p = 0.66), the antral follicle count calculated by transvaginal ultra-
sound (11.09 ± 1.82 vs. 12.36 ± 2.36, respectively; p = 0.25), the num-
ber of oocytes collected (6.18 ± 1.61 vs. 7.27 ± 1.68, respectively; 
p = 0.21), and the number of good-quality embryos formed at the 
blastocyst stage (3.08 ± 0.88 vs. 2.17 ± 0.49, respectively; p = 0.11) 
(Table 1). Because we used exactly the same protocol for gonado-
tropins before and after PRP, there was no significant difference in the 
dose of medications used between cycle 1 and cycle 2 (p > 0.05). 

Among all participants, 3 out of 37 embryos were euploid in cycle 1 
(8.11%), while 11 out of change to 28 embryos were euploid in cycle 
2 (39.28%, p = 0.002). Table 2 shows the individual results for each 
participant. Three clinical pregnancies were noted among the out-
comes of this patient group. The remainder of the patients are either 
still banking more euploid embryos or in the process of preparing for 
embryo transfer. 

Discussion

For many older infertile women with low ovarian reserve, the pro-
duction of an euploid embryo is a major challenge along their jour-
ney [23]. Here, we present, to our knowledge, the first case series 
comparing IVF euploidy rates pre-PRP and post-PRP (within 3 
months following the PRP procedure). The autologous PRP is known 
to contain cytokines, chemokines, and growth factors including 
platelet-derived growth factor, stromal cell derived factor 1, and he-
patocyte growth factor [24]. These molecular signals are known to 
initiate the recruitment, proliferation, and activation of fibroblasts, 

Table 1. Clinical data comparison between cycle 1 (before PRP) and cycle 2 (after PRP)

Variable Cycle 1 Cycle 2 p-value
FSH (mIU/mL) 7.98 ± 1.01 8.45 ± 1.55 0.66
Antral follicle count 11.09 ± 1.82 12.36 ± 2.36 0.25
Number of oocytes retrieved 6.18 ± 1.61 7.27 ± 1.68 0.21
Number of good-quality embryos formed at the blastocyst stage 3.08 ± 0.88 2.17 ± 0.49 0.11
Percentage of euploid embryos (%) 8.11 39.28 0.002

Values are presented as mean±standard error of the mean.
PRP, platelet-rich plasma; FSH, follicle-stimulating hormone.

Table 2. The age of the patients, the PGT-A results between cycles 1 and 2, and the clinical outcomes

Patient Age (yr)

Cycle 1 No. of days be-
tween PRP and 

the start of cycle 
2

Cycle 2

Clinical outcome Percent of euploid embryos before 
(cycle 1) → after PRP (cycle 2)No. of euploid 

embryos
No. of aneu-

ploid embryos
No. of euploid 

embryos
No. of aneu-

ploid embryos

1 28 0 1 45 2 0 CP 0 → 100
2 33 0 2 38 1 0 Chemical pregnancy 0 → 100
3 39 0 2 15 0 1 NA 0 → 0
4 39 0 4 (1 Mosaic) 60 2 2 Pending ET 0 → 50
5 40 1 3 14 2 1 CP 25 → 66
6 41 0 4 78 3 1 Mosaic CP 0 → 75
7 41 0 12 26 0 8 Pending ET 0 → 0
8 42 0 3 90 0 1 Pending ET 0 → 0
9 44 1 0 61 0 1 NA 100 → 0
10 44 0 2 75 0 1 Pending ET 0 → 0
11 45 1 0 33 0 1 NA 100 → 0
12 45 0 1 70 1 0 Pending ET 0 → 100

PGT-A, preimplantation genetic testing for aneuploidy; PRP, platelet-rich plasma; CP, clinical pregnancy; NA, not applicable; ET, embryo transfer.
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neutrophils, monocytes, which are expected to regulate angiogene-
sis and tissue perfusion which might be an independent way to 
achieve ooplasm improvement within the adult human ovary [19]. 

Placing autologous cytokines within ovarian tissue may facilitate 
the production of higher AMH levels by granulosa cells and improve 
blastocyst ploidy. One possible mechanism is that any new follicles 
recruited and good quality oocytes obtained after the intraovarian 
injection of these growth factors have always resided in the ovaries, 
but are then stimulated by the PRP administration [25]. Another 
mechanism could be that the platelet growth factors present in the 
PRP activate, by supplying molecular signals, the existing ovarian 
stem cells to differentiate into de novo oocytes [2]. In vitro studies 
demonstrating the effect of PRP on the growth and survival of isolat-
ed early human follicles tend to support such theories, as the devel-
opment and survival rates of preantral follicles in PRP-supplemented 
culture media have been found to be significantly higher than in me-
dia without PRP supplementation, as demonstrated in a dose-depen-
dent manner with both fresh and vitrified ovarian samples [25]. Final-
ly, the oocytes of older women have aberrant meiotic events and im-
paired fertilization, resulting in poor embryonic development, partly 
due to altered mitochondrial number and function [26]. Studies have 
shown that aneuploid embryos have relatively high mitochondrial 
DNA copy numbers [27]. It is plausible that PRP improves ooplasm 
quality by altering the mitochondria, leading to improvements in 
meiosis and thus resulting in ploidy rescue of the embryos. 

The limitations of this case series include a small sample size and 
the lack of a control group, such a group would have been women 
who underwent ovarian puncture without the injection of PRP, since 
mechanical puncture of the ovaries could have an effect on ovarian 
function. Even though all the patients in this reported a history of 
prior failed IVF, other limitations include the wide range in the ages 
of patients (from 28 to 45 years old) and the lack of complete preg-
nancy outcomes in all participants because many of them are still 
trying to bank more euploid embryos. 

In summary, there is a clear need for well-designed studies per-
taining to the effect of the commonly used intraovarian PRP admin-
istration in women who struggle to form euploid embryos and who 
ultimately resort to the use of donor oocytes. Some investigators 
have explored the ovarian germline stem cell niche and its probable 
regulatory mechanisms with the hope of yielding valuable insights 
for the treatment of ovarian aging [28]. Investigations related to the 
effect of PRP on ovarian stem cells are likely to clarify the signaling 
pathways involved in de novo oocyte replenishment and follicular 
development, potentially helping older women with abnormal em-
bryo genetics [29]. 
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