Acknowledgement
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1A2C2093275) and supported by Global Research and Development Center (GRDC) Program through the NRF funded by the Ministry of Education, Science and Technology (2017K1A4A3014959).
References
- Hong EJ, Jeung EB (2013) Assessment of developmental toxicants using human embryonic stem cells. Toxicol Res 29:221-227. https://doi.org/10.5487/TR. 2013. 29.4. 221
- Hong EJ, Choi Y, Yang H, Kang HY, Ahn C, Jeung EB (2015) Establishment of a rapid drug screening system based on embryonic stem cells. Environ Toxicol Pharmacol 39:327-338. https://doi.org/10.1016/j.etap.2014.12.003
- Kang HY, Choi YK, Jo NR, Lee JH, Ahn C, Ahn IY, Kim TS, Kim KS, Choi KC, Lee JK, Lee SD, Jeung EB (2017) Advanced developmental toxicity test method based on embryoid body's area. Reprod Toxicol 72:74-85. https://doi.org/10.1016/j.reprotox.2017.06.185
- Lee JH, Park SY, Ahn C, Kim CW, Kim JE, Jo NR, Kang HY, Yoo YM, Jung EM, Kim EM, Kim KS, Choi KC, Lee SD, Jeung EB (2019) Pre-validation study of alternative developmental toxicity test using mouse embryonic stem cell-derived embryoid bodies. Food Chem Toxicol 123:50-56. https://doi.org/10.1016/j.fct.2018.10.044
- Lee JH, Park SY, Ahn C, Yoo YM, Kim CW, Kim JE, Jo NR, Kang HY, Jung EM, Kim KS, Choi KC, Lee SD, Jeung EB (2020) Second-phase validation study of an alternative developmental toxicity test using mouse embryonic stem cell-derived embryoid bodies. J Physiol Pharmacol. https://doi.org/10.26402/jpp.2020.2.06
- Crisp TM, Clegg ED, Cooper RL, Wood WP, Anderson DG, Baetcke KP, Hoffmann JL, Morrow MS, Rodier DJ, Schaeffer JE, Touart LW, Zeeman MG, Patel YM (1998) Environmental endocrine disruption: an effects assessment and analysis. Environ Health Perspect 106(Suppl 1):11-56. https://doi.org/10.1289/ehp.98106s111
- Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC (2009) Endocrinedisrupting chemicals: an endocrine society scientific statement. Endocr Rev 30:293-342. https://doi.org/10.1210/er.2009-0002
- Kahn LG, Philippat C, Nakayama SF, Slama R, Trasande L (2020) Endocrine-disrupting chemicals: implications for human health. Lancet Diabetes Endocrinol 8:703-718. https://doi.org/10.1016/S2213-8587(20)30129-7
- McLachlan JA (2001) Environmental signaling: what embryos and evolution teach us about endocrine disrupting chemicals. Endocr Rev 22:319-341. https://doi.org/10.1210/edrv. 22.3. 0432
- Seiler A, Visan A, Buesen R, Genschow E, Spielmann H (2004) Improvement of an in vitro stem cell assay for developmental toxicity: the use of molecular endpoints in the embryonic stem cell test. Reprod Toxicol 18:231-240. https://doi.org/10.1016/j.reprotox.2003.10.015
- Jung EM, Moffat JJ, Liu J, Dravid SM, Gurumurthy CB, Kim WY (2017) Arid1b haploinsufficiency disrupts cortical interneuron development and mouse behavior. Nat Neurosci 20:1694-1707. https://doi.org/10.1038/s41593-017-0013-0
- Soni MG, Burdock GA, Taylor SL, Greenberg NA (2001) Safety assessment of propyl paraben: a review of the published literature. Food Chem Toxicol 39:513-532. https://doi.org/10.1016/S0278-6915(00)00162-9
- Shin MY, Shin C, Choi JW, Lee J, Lee S, Kim S (2019) Pharmacokinetic profile of propyl paraben in humans after oral administration. Environ Int. https://doi.org/10.1016/J. Envint.2019.104917
- Jung EM, An BS, Choi KC, Jeung EB (2012) Potential estrogenic activity of triclosan in the uterus of immature rats and rat pituitary GH3 cells. Toxicol Lett 208:142-148. https://doi.org/10.1016/j.toxlet.2011.10.017
- Jones RD, Jampani HB, Newman JL, Lee AS (2000) Triclosan: a review of effectiveness and safety in health care settings. Am J Infect Control 28:184-196. https://doi.org/10.1016/S0196-6553(00)90027-0
- Olaniyan LWB, Okoh OO, Mkwetshana NT, Okoh AI (2020) Environmental water pollution, endocrine interference and ecotoxicity of 4-tert-Octylphenol: a review. Rev Environ Contam Toxicol 248:81-109. https://doi.org/10.1007/398_2018_20
- Cummings AM (1997) Methoxychlor as a model for environmental estrogens. Crit Rev Toxicol 27:367-379. https://doi.org/10.3109/10408449709089899
- Rochester JR (2013) Bisphenol A and human health: a review of the literature. Reprod Toxicol 42:132-155. https://doi.org/10.1016/j.reprotox.2013.08.008
- Giusti RM, Iwamoto K, Hatch EE (1995) Diethylstilbestrol revisited-a review of the long-term health-effects. Ann Intern Med 122:778-788. https://doi.org/10.7326/0003-4819-122-10-199505150-00008
- Rattan S, Zhou CQ, Chiang C, Mahalingam S, Brehm E, Flaws JA (2017) Exposure to endocrine disruptors during adulthood: consequences for female fertility. J Endocrinol 233:R109-R129. https://doi.org/10.1530/Joe-17-0023
- Kabir ER, Rahman MS, Rahman I (2015) A review on endocrine disruptors and their possible impacts on human health. Environ Toxicol Pharmacol 40:241-258. https://doi.org/10.1016/j.etap.2015.06.009
- Wiley DJ, Douglas J, Beutner K, Cox T, Fife K, Moscicki AB, Fukumoto L (2002) External genital warts: diagnosis, treatment, and prevention. Clin Infect Dis 35:S210-S224. https://doi.org/10.1086/342109
- Kim HM, Han SB, Kim MS, Kang JS, Oh GT, Hong DH (1996) Efficient fixation procedure of human leukemia cells in sulforhodamine B cytotoxicity assay. J Pharmacol Toxicol Methods 36:163-169. https://doi.org/10.1016/s1056-8719(96)00113-x
- Kubiak M, Mucha P, Rotsztejn H (2020) Comparative study of 15% trichloroacetic acid peel combined with 70% glycolic acid and 35% trichloroacetic acid peel for the treatment of photodamaged facial skin in aging women. J Cosmet Dermatol 19:137-146. https://doi.org/10.1111/jocd.13171
- Sacchidanand S, Shetty AB, Leelavathy B (2015) Efficacy of 15% trichloroacetic acid and 50% glycolic acid peel in the treatment of frictional melanosis: a comparative study. J Cutan Aesthet Surg 8:37-41. https://doi.org/10.4103/0974-2077.155078
- Moy LS, Peace S, Moy RL (1996) Comparison of the effect of various chemical peeling agents in a mini-pig model. Dermatol Surg 22:429-432. https://doi.org/10.1111/j.1524-4725.1996.tb00342.x
- Pan JL, Yao YY, Guo XX, Kong FY, Zhou J, Meng XQ (2019) Endoplasmic reticulum stress, a novel significant mechanism responsible for DEHP-induced increased distance between seminiferous tubule of mouse testis. J Cell Physiol 234:19807-19823. https://doi.org/10.1002/jcp. 28580
- Bansal A, Henao-Mejia J, Simmons RA (2018) Immune system: an emerging player in mediating effects of endocrine disruptors on metabolic health. Endocrinology 159:32-45. https://doi. org/10.1210/en.2017-00882
- Sun X, Lin Y, Huang QS, Shi JP, Qiu L, Kang M, Chen YJ, Fang C, Ye T, Dong SJ (2015) Di(2-ethylhexyl) phthalate-induced apoptosis in rat INS-1 cells is dependent on activation of endoplasmic reticulum stress and suppression of antioxidant protection. J Cell Mol Med 19:581-594. https://doi.org/10.1111/jcmm.12409