Acknowledgement
We would like to thank Ms. Se Ryeong Jeong, Hyun Ji Won, Nahyeon Gu, Kanghee Ryu for their technical assistance. This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2019R1F1A1058721).
References
- Bidola P, e Silva JMDS, Achterhold K, Munkhbaatar E, Jost PJ, Meinhardt A-L, Taphorn K, Zdora M-C, Pfeiffer F, Herzen J (2019) A step towards valid detection and quantification of lung cancer volume in experimental mice with contrast agentbased X-ray microtomography. Sci Rep 9:1-10. https://doi. org/10.1038/s41598-018-37394-w
- Nojima S, Susaki EA, Yoshida K, Takemoto H, Tsujimura N, Iijima S, Takachi K, Nakahara Y, Tahara S, Ohshima K (2017) CUBIC pathology: three-dimensional imaging for pathological diagnosis. Sci Rep 7:1-14. https://doi.org/10.1038/s41598-017-09117-0
- Geng J (2013) Three-dimensional display technologies. Adv Opt Photonics 5:456-535. https://doi.org/10.1364/AOP.5.000456
- Hipp JD, Fernandez A, Compton CC, Balis UJ (2011) Why a pathology image should not be considered as a radiology image. J Pathol Inform 2:26. https://doi.org/10.4103/2153-3539.82051
- Clarke G, Holloway C, Zubovits J, Nofech-Mozes S, Murray M, Liu K, Wang D, Kiss A, Yaffe M (2019) Three-dimensional tumor visualization of invasive breast carcinomas using wholemount serial section histopathology: implications for tumor size assessment. Breast Cancer Res Treat 174:669-677.https://doi.org/10.1007/s10549-018-05122-7
- Farahani N, Parwani AV, Pantanowitz L (2015) Whole slide imaging in pathology: advantages, limitations, and emerging perspectives. Pathol Lab Med Int 7:23-33. https://doi.org/10.2147/PLMI.S59826
- Fujimoto JG, Pitris C, Boppart SA, Brezinski ME (2000) Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2:9-25. https://doi.org/10.1038/sj.neo.7900071
- Lundervold AS, Lundervold A (2019) An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 29:102-127. https://doi.org/10.1016/j. zemedi. 2018. 11. 002
- De Jong M, Essers J, Van Weerden WM (2014) Imaging preclinical tumour models: improving translational power. Nat Rev Cancer 14:481-493. https://doi.org/10.1038/nrc3751
- Chen Y, Liang C-P, Liu Y, Fischer AH, Parwani AV, Pantanowitz L (2012) Review of advanced imaging techniques. J Pathol Inform 3:22. https://doi.org/10.4103/2153-3539.96751
- Barck KH, Bou-Reslan H, Rastogi U, Sakhuja T, Long JE, Molina R, Lima A, Hamilton P, Junttila MR, Johnson L (2015) Quantification of tumor burden in a genetically engineered mouse model of lung cancer by micro-CT and automated analysis. Transl Oncol 8:126-135. https://doi.org/10.1016/j.tranon.2015.03.003
- Vande Velde G, Poelmans J, De Langhe E, Hillen A, Vanoirbeek J, Himmelreich U, Lories RJ (2016) Longitudinal micro-CT provides biomarkers of lung disease that can be used to assess the effect of therapy in preclinical mouse models, and reveal compensatory changes in lung volume. Dis Model Mech 9:91-98. https://doi.org/10.1242/dmm.020321
- Wang T, Brewer M, Zhu Q (2015) An overview of optical coherence tomography for ovarian tissue imaging and characterization. Wiley Interdiscip Rev: Nanomed Nanobiotechnol 7:1-16. https://doi.org/10.1002/wnan.1306
- Tsuboi M, Hayashi A, Ikeda N, Honda H, Kato Y, Ichinose S, Kato H (2005) Optical coherence tomography in the diagnosis of bronchial lesions. Lung Cancer 49:387-394. https://doi.org/10.1016/j.lungcan.2005.04.007
- Takae S, Tsukada K, Sato Y, Okamoto N, Kawahara T, Suzuki N (2017) Accuracy and safety verification of ovarian reserve assessment technique for ovarian tissue transplantation using optical coherence tomography in mice ovary. Sci Rep 7:43550. https://doi.org/10.1038/srep43550
- Hariri LP, Mino-Kenudson M, Lanuti M, Miller AJ, Mark EJ, Suter MJ (2015) Diagnosing lung carcinomas with optical coherence tomography. Ann Am Thorac Soc 12:193-201. https://doi.org/10.1513/AnnalsATS.201408-370OC
- Shaulov L, Harel A (2012) Improved visualization of vertebrate nuclear pore complexes by field emission scanning electron microscopy. Structure 20:407-413. https://doi.org/10.1016/j.str.2012.01.022
- Kawasaki H, Itoh T, Takaku Y, Suzuki H, Kosugi I, Meguro S, Iwashita T, Hariyama T (2020) The NanoSuit method: a novel histological approach for examining paraffin sections in a nondestructive manner by correlative light and electron microscopy. Lab Invest 100:161-173. https://doi.org/10.1038/s41374-019-0309-7
- Havrdova M, Polakova K, Skopalik J, Vujtek M, Mokdad A, Homolkova M, Tucek J, Nebesarova J, Zboril R (2014) Field emission scanning electron microscopy (FE-SEM) as an approach for nanoparticle detection inside cells. Micron 67:149-154. https://doi.org/10.1016/j.micron.2014.08.001
- Dullin C, Ufartes R, Larsson E, Martin S, Lazzarini M, Tromba G, Missbach-Guentner J, Pinkert-Leetsch D, Katschinski DM, Alves F (2017) μCT of ex-vivo stained mouse hearts and embryos enables a precise match between 3D virtual histology, classical histology and immunochemistry. PLoS ONE 12:e0170597. https://doi.org/10.1371/journ al.pone.0170597
- Ahn Y, Lee C-Y, Baek S, Kim T, Kim P, Lee S, Min D, Lee H, Kim J, Jung W (2016) Quantitative monitoring of laser-treated engineered skin using optical coherence tomography. Biomed Opt Express 7:1030-1041. https://doi.org/10.1364/BOE.7.001030
- Viswanath P, Peng S, Singh R, Kingsley C, Balter PA, Johnson FM (2018) A novel method for quantifying total thoracic tumor burden in mice. Neoplasia 20:975-984. https://doi.org/10.1016/j.neo.2018.08.003
- Raghunathan R, Singh M, Dickinson ME, Larin KV (2016) Optical coherence tomography for embryonic imaging: a review. J Biomed Opt 21:050902. https://doi.org/10.1117/1.JBO.21.5.050902
- Richardson DS, Lichtman JW (2015) Clarifying tissue clearing. Cell 162:246-257. https://doi.org/10.1016/j. cell. 2015. 06. 067
- Wang J, Xu Y, Boppart SA (2017) Review of optical coherence tomography in oncology. J Biomed Opt 22:1-23. https://doi.org/10.1117/1.JBO.22.12.121711