Acknowledgement
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1I1A3A01061498).
References
- Confavreux CB. 2011. Bone: from a reservoir of minerals to a regulator of energy metabolism. Kidney Int. 79121: S14-19. https://doi.org/10.1038/ki.2011.25
- Al-Bari, AA, Al Mamun AA. 2020. Current advances in regulation of bone homeostasis. FASEB Bioadv. 2: 668-679. https://doi.org/10.1096/fba.2020-00058
- Kim JM, Lin C, Stavre Z,Greenblatt MB, Shim JH. 2020. Osteoblast-osteoclast communication and bone homeostasis. Cells 9: 2073. https://doi.org/10.3390/cells9092073
- Kim JH, Kim N. 2016. Signaling pathways in osteoclast differentiation. Chonnam Med. J. 52: 12-17. https://doi.org/10.4068/cmj.2016.52.1.12
- Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, et al. 2002. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3: 889-901. https://doi.org/10.1016/S1534-5807(02)00369-6
- Pennanen P, Kallionpaa RA, Peltonen S, Nissinen L, Kahari VM, Heerva E, et al. 2021. Signaling pathways in human osteoclasts differentiation: ERK1/2 as a key player. Mol. Biol. Rep. 48: 1243-1254. https://doi.org/10.1007/s11033-020-06128-5
- Phimphilai M, Zhao Z, Boules H, Roca H, Franceschi RT. 2006. BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype. J. Bone Miner. Res. 21: 637-646. https://doi.org/10.1359/jbmr.060109
- Amarasekara DS, Kim S, Rho J. 2021. Regulation of osteoblast differentiation by cytokine networks. Int. J. Mol. Sci. 22: 2851. https://doi.org/10.3390/ijms22062851
- Golub EE, Boesze-Battaglia K. 2007. The role of alkaline phosphatase in mineralization. Curr. Opin. Orthop. 18: 444-448. https://doi.org/10.1097/BCO.0b013e3282630851
- Lotz EM, Lohmann CH, Boyan BD, Schwartz Z. 2020. Bisphosphonates inhibit surface-mediated osteogenesis. J. Biomed. Mater. Res. A 108: 1774-1786. https://doi.org/10.1002/jbm.a.36944
- Levin VA, Jiang X, Kagan R. 2018. Estrogen therapy for osteoporosis in the modern era. Osteoporos. Int. 9: 1049-1055. https://doi.org/10.1007/s00198-018-4414-z
- Oh S, Ahn SC. 2015. Current medical therapies for osteoporosis and its alternative treatments using natural products. Kor. Life Sci. 25: 113-120. https://doi.org/10.5352/JLS.2015.25.1.113
- Zheng X, Lee SK, Chun OK. 2016. Soy Isoflavones and osteoporotic bone loss: a review with an emphasis on modulation of bone remodeling. J. Med. Food 19: 1-14. https://doi.org/10.1089/jmf.2015.0045
- Martiniakova M, Babikova M, Omelka R. 2020. Pharmacological agents and natural compounds: available treatments for osteoporosis. J. Physiol. Pharmacol. 71: 307-320.
- Kim YW, Baek SH, Lee SH, Kim TH, Kim SY. 2014. Fucoidan, a sulfated polysaccharide, inhibits osteoclast differentiation and function by modulating RANKL signaling. Int. J. Mol. Sci. 15: 18840-18855. https://doi.org/10.3390/ijms151018840
- Kim BS, Kang HJ, Park JY, Lee J. 2015. Fucoidan promotes osteoblast differentiation via JNK- and ERK-dependent BMP2-Smad 1/5/ 8 signaling in human mesenchymal stem cells. Exp. Mol. Med. 47: e128. https://doi.org/10.1038/emm.2014.95
- Jin X, Zhu L, Li X, Jia J, Zhang Y, Sun X, et al. 2017. Low-molecular weight fucoidan inhibits the differentiation of osteoclasts and reduces osteoporosis in ovariectomized rats. Mol. Med. Rep. 15: 890-898. https://doi.org/10.3892/mmr.2016.6062
- Lu SH, Hsia YJ, Shih KC, Chou TC. 2019. Fucoidan prevents RANKL-stimulated osteoclastogenesis and LPS-induced inflammatory bone loss via regulation of Akt/GSK3beta/PTEN/NFATc1 signaling pathway and calcineurin activity. Mar. Drugs 17: 345. https://doi.org/10.3390/md17060345
- Park SJ, Lee KW, Lim DS, Lee S. 2011. The sulfated polysaccharide fucoidan stimulates osteogenic differentiation of human adiposederived stem cells. Stem Cells Dev. 21: 2204-2211. https://doi.org/10.1089/scd.2011.0521
- Cho YS, Jung WK, Kim JA, Choi IW, Kim SK. 2009. Beneficial effects of fucoidan on osteoblastic MG-63 cell differentiation. Food Chem. 116: 990-994. https://doi.org/10.1016/j.foodchem.2009.03.051
- Lee YK, Lim DJ, Lee YH, Park YI. 2006. Variation in fucoidan contents and monosaccharide compositions of Korean Undaria pinnatifida (Harvey) Suringar (Phaeophyta). Algae 21: 157-160. https://doi.org/10.4490/ALGAE.2006.21.1.157
- Zayed A, El-Aasr M, Ibrahim AS, Ulber, R. 2020. Fucoidan characterization: determination of purity and physicochemical and chemical properties. Mar. Drugs 18: 571. https://doi.org/10.3390/md18110571
- van Weelden G, Bobinski M, Okla K, van Weelden WJ, Romano A, Pijnenborg JMA. 2019. Fucoidan structure and activity in relation to anti-cancer mechanisms. Mar. Drugs 17: 32. https://doi.org/10.3390/md17010032
- Mansour MB, Balti R, Yacoub L, Ollivier V, Chaubet F, Maaroufi RM. 2019. Primary structure and anticoagulant activity of fucoidan from the sea cucumber Holothuria polii. Int. J. Biol. Macromol. 121: 1145-1153. https://doi.org/10.1016/j.ijbiomac.2018.10.129
- Min SK, Kwon OC, Lee S, Park KH, Kim JK. 2012. An antithrombotic fucoidan, unlike heparin, does not prolong bleeding time in a murine arterial thrombosis model: a comparative study of Undaria pinnatifida sporophylls and Fucus vesiculosus. Phytother. Res. 26: 752-757. https://doi.org/10.1002/ptr.3628
- Apostolov E, Lukova P, Baldzhieva A, Katsarov P, Nikolova M, Iliev I, et al. 2020. Immunomodulatory and anti-inflammatory effects of fucoidan: a review. Polymers (Basel) 12: 2338. https://doi.org/10.3390/polym12102338
- Wang W, Wu J, Zhang X, Hao C, Zhao X, Jiao G, et al. 2017. Inhibition of influenza a virus infection by fucoidan targeting viral neuraminidase and cellular EGFR pathway. Sci. Rep. 7: 40760. https://doi.org/10.1038/srep40760
- Wang Y, Xing M, Cao Q, Ji A, Liang H, Song S. 2019. Biological activities of fucoidan and the factors mediating its therapeutic effects: a review of recent studies. Mar. Drugs 2019, 17: 183. https://doi.org/10.3390/md17030183
- Yang JY, Lim SY. 2019. Fucoidans and bowel health. Mar. Drugs 19: 436. https://doi.org/10.3390/md19080436
- Wang X, Shan X, Dun Y, Cai C, Hao J, Li G, et al. 2019. Anti-metabolic syndrome effects of fucoidan from Fucus vesiculosus via reactive oxygen species-mediated regulation of JNK, Akt, and AMPK signaling. Molecules 24: 3319. https://doi.org/10.3390/molecules24183319
- Wu SY, Yang WY, Cheng CC, Lin KH, Sampurna BP, Chan SM, et al. 2020. Low molecular weight fucoidan inhibits hepatocarcinogenesis and nonalcoholic fatty liver disease in zebrafish via ASGR/STAT3/HNF4A signaling. Clin. Transl. Med. 10: e252. https://doi.org/10.1002/ctm2.252
- Wang J, Zhang Q, Zhang Z, Song H, Li P. 2010. Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. Int. J. Biol. Macromol. 46: 6-12. https://doi.org/10.1016/j.ijbiomac.2009.10.015
- Zhao X, Guo F, Hu J, Zhang L, Xue C, Zhang Z, et al. 2016. Antithrombotic activity of oral administered low molecular weight fucoidan from Laminaria japonica. Thromb. Res. 144: 46-52. https://doi.org/10.1016/j.thromres.2016.03.008
- Cui W, Zheng Y, Zhang Q, Wang J, Wang L, Yang W, et al. 2014. Low-molecular-weight fucoidan protects endothelial function and ameliorates basal hypertension in diabetic Goto-Kakizaki rats. Lab. Invest. 94: 382-393. https://doi.org/10.1038/labinvest.2014.12
- Madeira JV, Teixeira CB, Macedo GA. 2015. Biotransformation and bioconversion of phenolic compounds obtainment: an overview. Crit. Rev. Biotechnol. 35: 75-81. https://doi.org/10.3109/07388551.2013.803020
- Singh R. 2017. Microbial biotransformation: a process for chemical alterations. J. Bacteriol. Mycol. 4: 85.
- Kee SH, Chiongson JBV, Saludes JP, Vigneswari S, Ramakrishna S, Bhubalan K. 2021. Bioconversion of agro-industry sourced biowaste into biomaterials via microbial factories - A viable domain of circular economy. Environ. Pollut. 271: 116311. https://doi.org/10.1016/j.envpol.2020.116311
- Li B, Lu F, Wei X, Zhao R. 2008. Fucoidan: structure and bioactivity. Molecules 13: 1671-1695. https://doi.org/10.3390/molecules13081671
- Morya VK, Kim J, Kim EK. 2012. Algal fucoidan: structural and size-dependent bioactivities and their perspectives. Appl. Microbiol. Biotechnol. 93: 71-82. https://doi.org/10.1007/s00253-011-3666-8
- Ale MT, Mikkelsen JD, Meyer AS. 2011. Important determinants for fucoidan bioactivity: a critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar. Drugs 9: 2106-2130. https://doi.org/10.3390/md9102106
- So H, Rho J, Jeong D, Park R, Fisher DE, Ostrowski MC, et al. 2003. Microphthalmia transcription factor and PU.1 synergistically induce the leukocyte receptor osteoclast-associated receptor gene expression. J. Biolog. Chem. 278: 24209-24216. https://doi.org/10.1074/jbc.M302940200
- Rethineswaran VK, Kim YJ, Jang WB, Ji ST, Kang S, Kim DY, et al. 2019. Enzyme-aided extraction of fucoidan by AMG augments the functionality of EPCs through regulation of the AKT/Rheb signaling pathway. Mar. Drugs 17: 392. https://doi.org/10.3390/md17070392
- Lee JW, Kim JH, Kim K, Jin HM, Lee KB, Chung DJ, et al. 2007. Ribavirin enhances osteoclast formation through osteoblasts via upregulation of TRANCE/RANKL. Mol. Cell. Biochem. 296: 17-24. https://doi.org/10.1007/s11010-006-9293-5