DOI QR코드

DOI QR Code

Root-Knot Nematode (Meloidogyne incognita) Control Using a Combination of Lactiplantibacillus plantarum WiKim0090 and Copper Sulfate

  • Kim, Seulbi (Technology Innovation Research Division, World Institute of Kimchi) ;
  • Kim, Ho Myeong (Technology Innovation Research Division, World Institute of Kimchi) ;
  • Seo, Hye Jeong (Division of Applied Bioscience and Biotechnology, Chonnam National University) ;
  • Yeon, Jehyeong (Division of Applied Bioscience and Biotechnology, Chonnam National University) ;
  • Park, Ae Ran (Division of Applied Bioscience and Biotechnology, Chonnam National University) ;
  • Yu, Nan Hee (Division of Applied Bioscience and Biotechnology, Chonnam National University) ;
  • Jeong, Seul-Gi (Technology Innovation Research Division, World Institute of Kimchi) ;
  • Chang, Ji Yoon (Technology Innovation Research Division, World Institute of Kimchi) ;
  • Kim, Jin-Cheol (Division of Applied Bioscience and Biotechnology, Chonnam National University) ;
  • Park, Hae Woong (Technology Innovation Research Division, World Institute of Kimchi)
  • Received : 2022.05.13
  • Accepted : 2022.07.21
  • Published : 2022.08.28

Abstract

Lactic acid bacteria (LAB) exert antagonistic activity against root-knot nematodes, mainly by producing organic acids via carbohydrate fermentation. However, they have not yet been used for root-knot nematode (Meloidogyne incognita) control owing to a lack of economic feasibility and effectiveness. In this study, we aimed to isolate organic acid-producing LAB from kimchi (Korean traditional fermented cabbage) and evaluated their nematicidal activity. Among the 234 strains isolated, those showing the highest nematicidal activity were selected and identified as Lactiplantibacillus plantarum WiKim0090. Nematicidal activity and egg hatch inhibitory activity of WiKim0090 culture filtrate were dose dependent. Nematode mortality 3 days after treatment with 2.5% of the culture filtrate was 100%, with a 50% lethal concentration of 1.41%. In pot tests, the inhibitory activity of an L. plantarum WiKim0090-copper sulfate mixture on gall formation increased. Compared to abamectin application, which is a commercial nematicide, a higher control value was observed using the WiKim0090-copper sulfate mixture, indicating that this combination can be effective in controlling the root-knot nematode.

Keywords

Acknowledgement

This research was supported by the World Institute of Kimchi (Grant Nos. KE1901-1 and KE2202-1-2), funded by the Ministry of Science and ICT, Republic of Korea.

References

  1. Moen M, Perry RN, Starr JL. 2009. Meloidogyne species- a diverse novel group and important plant parasites. In Perry RN, Moens M, Starr JL (eds.), Root-Knot Nematodes pp. 1-17. CAB International, Wallingford, UK.
  2. Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Valerie M. Williamson. 1998. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10: 1307-1319. https://doi.org/10.1105/tpc.10.8.1307
  3. Sikora RA, Fernandez E. 2005. Nematode parasites of vegetables, pp. 319-392. In Luc M, Sikora RA, Bridge J (eds.), Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. CAB International, Wallingford, UK.
  4. Choo HY, Kim HK, Park JC, Lee SM, Lee JI. 1987. Studies on the patterns of plastic film house, their growing conditions, and diseases and pests occurrence on horticultural crops in southern part of Korea. Insects and nematodes associated with horticultural crops and effect of nursery soil conditions on the infection of root-knot nematode. Korean J. Plant Prot. 26: 195-201.
  5. Manzanilla-Lopez RH, Kenneth E, Bridge J. 2004. Plant diseases caused by nematodes, pp. 637-716. In Chen ZX, Chen SY, Dickson DW (eds.) Nematology Advances and Perspectives, Nematode Management and Utilization. CAB International, Wallingford, UK.
  6. Trudgill DL, Blok VC. 2001. Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annu. Rev. Phytopathol. 39: 53-77. https://doi.org/10.1146/annurev.phyto.39.1.53
  7. Jun H-S, Park W-C. 2001. Soil chemical characteristics and comparison with infested status of nematode (Meloidogyne spp.) in plastic house continuously cultivated oriental melon in Songju. Korean J. Environ. Agric. 20: 127-132.
  8. Lee H-K, Lee Y-H, Kim K-S, Jang Y-S, Choi I-H. 2015. The effect control of root-knot nematode by using rapeseed meal in continuous cultivation at greenhouse. Korean J Plant Res. 28: 93-100. https://doi.org/10.7732/kjpr.2015.28.1.093
  9. Kim TY, Jang JY, Yu NH, Chi WJ, Bae CH, Yeo JH, et al. 2018. Nematicidal activity of grammicin produced by Xylaria grammica KCTC 13121BP against Meloidogyne incognita. Pest Manag. Sci. 74: 384-391. https://doi.org/10.1002/ps.4717
  10. Park HW, Kim HH, Kim DH, Cho MR, Kim JC, Shin TS, et al. 2016. Biocontrol potential of Myrothcium roridum Tode ex Fr. (Hypocreales: incertae sedis) against root-knot nematode Meloidogyne incognita (Kofoid & White) Chitwood (Tylenchida: Heteroderidae). J. Asia Pac. Entomol. 19: 447-450. https://doi.org/10.1016/j.aspen.2016.04.011
  11. Seo HJ, Park AR, Kim S, Yeon J, Yu NH, Ha S, et al. 2019. Biological control of root-knot nematodes by organic acid-producing Lactobacillus brevis WiKim0069 isolated from kimchi. Plant Pathol. J. 35: 662-673. https://doi.org/10.5423/PPJ.OA.08.2019.0225
  12. Desaeger J, Dickson DW, Locascio SJ. 2017. Methyl bromide alternatives for control of root-knot nematode (Meloidogyne spp.) in tomato production in Florida. J. Nematol. 49: 140-149. https://doi.org/10.21307/jofnem-2017-058
  13. Bintsis T. 2017. Lactic acid bacteria: their applications in foods. J. Bacteriol. Mycol. 6: 89-94.
  14. Hamed HA, Moustafa YA, Abdel-Aziz SM. 2011. In vivo efficacy of lactic acid bacteria in biological control against Fusarium oxysporum for protection of tomato plant. Life Sci. J. 8: 462-468.
  15. Trias R, Baneras L, Montesinos E, Badosa E. 2008. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. Int. Microbiol. 11: 231-236.
  16. Eloh K, Demurtas M, Mura MG, Deplano A, Onnis V, Sasanelli N, et al. 2016. Potent nematicidal activity of maleimide derivatives on Meloidogyne incognita. J. Agric. Food Chem. 64: 4876-4881. https://doi.org/10.1021/acs.jafc.6b02250
  17. Korthals GW, Bongers T, Kammenga JE, Alexiev AD, Lexmond TM. 1996. Long-term effects of copper and pH on the nematode community in an agroecosystem. Environ. Toxicol. Chem. 15: 979-985. https://doi.org/10.1002/etc.5620150621
  18. Yeon J, Park AR, Kim YJ, Seo YJ, Yu NH, Ha SH, et al. 2019. Control of root-knot nematodes by a mixture of maleic acid and copper sulfate. Appl. Soil Ecol. 141: 61-68. https://doi.org/10.1016/j.apsoil.2019.05.010
  19. Berg J, Tom-Petersen A, Nybroe O. 2005. Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field. Lett. Appl. Microbiol. 40: 146-151. https://doi.org/10.1111/j.1472-765X.2004.01650.x
  20. McBride RG, Mikkelsen RL, Barker KR. 2000. The role of low molecular weight organic acids from decomposing rye in inhibiting root-knot nematode populations in soil. Appl. Soil Ecol. 15: 243-251. https://doi.org/10.1016/S0929-1393(00)00062-7
  21. Tabarant P, Villenave V, Risede JM, Roger-Estrade J, Thuries L, Dorel M. 2011. Effects of four organic amendments on banana parasitic nematodes and soil nematode communities. Appl. Soil Ecol. 49: 59-67. https://doi.org/10.1016/j.apsoil.2011.07.001
  22. Yan D, Yan D, Song X, Yu Z, Peng D, Ting X, et al. 2018. Community structure of soil nematodes under different drought conditions. Geoderma 325: 110-116. https://doi.org/10.1016/j.geoderma.2018.03.028
  23. Bakonyi G, Nagy P, Kovacs-Lang E, Kovacs E, Barabas S, Repasi V, et al. 2007. Soil nematode community structure as affected by temperature and moisture in a temperate semiarid shrubland. Appl. Soil Ecol. 37: 31-40. https://doi.org/10.1016/j.apsoil.2007.03.008
  24. Seo YH, Kim YH. 2014. Control of Meloidogyne incognita using mixtures of organic acids. Plant Pathol. J. 30: 450-455. https://doi.org/10.5423/PPJ.NT.07.2014.0062
  25. Park HW, Kim HH, Youn SH, Shin TS, Bilgrami AL, Cho MR, et al. 2012. Biological control potentials of insect-parasitic nematode Rhabditis blumi (Nematoda: Rhabditida) for major cruciferous vegetable insect pests. Appl. Entomol. Zool. 47: 389-397. https://doi.org/10.1007/s13355-012-0131-9
  26. Terefe M, Tefera T, Sakhuja PK. 2009. Effect of a formulation of Bacillus firmus on root-knot nematode Meloidogyne incognita infestation and the growth of tomato plants in the greenhouse and nursery. J. Invertebr. Pathol. 100: 94-99. https://doi.org/10.1016/j.jip.2008.11.004
  27. Cayrol J-C, Djian C, Pijarowski L. 1989. Study of the nematocidal properties of the culture filtrate of the nematophagous fungus Paecilomyces lilacinus. Rev. Nematol. 12: 331-336.
  28. Schneider P, Orelli O. 1947. Entomologisches Praktikum [Entomological internship]. Verlag. H.R. pp. 237. Sauerlander Co., Aarau, Switzerland.
  29. Barker KR. 1985. An advanced treatise on Meloidogyne, pp. 19-35. In Barker KR, Carter CC, Sasser JN (eds.) Nematode Extractions and Bioassays. North Carolina State University, Raleigh, NC.
  30. Jenkins WR. 1964. A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis. Rep. 48: 692
  31. Cho MR, Dickson DW, Hewlett TE. 2005. Comparison of inoculation methods, Meloidogyne spp. and different host plants for production of Pasteuria penetrans. J. Asia Pac. Entomol. 8: 297-300. https://doi.org/10.1016/S1226-8615(08)60249-6
  32. Takatsu T, Horiuchi N, Ishikawa M, Wanibuchi K, Moriguchi T, Takahashi S. 2003. 1100-50, a novel nematicide from Streptomyces lavendulae SANK 64297. J. Antibiot. (Tokyo) 56: 306-309. https://doi.org/10.7164/antibiotics.56.306
  33. Wilson MJ, Jackson TA. 2013. Progress in the commercialization of bionematicides. BioControl 58: 715-722. https://doi.org/10.1007/s10526-013-9511-5
  34. El-Mabrok ASW, Hassan Z, Mokhtar AM, Hussain KMA, Kahar FKSBA. 2012. Screening of lactic acid bacteria as biocontrol against (Collectotrichum capsici) on chilli bangi. Res. J. Appl. Sci. 7: 446-473.
  35. Jang JY, Choi YH, Shin TS, Kim TH, Shin KS, Park HW, et al. 2016. Biological control of Meloidogyne incognita by Aspergillus niger F22 producing oxalic acid. PLos One 11: e0156230. https://doi.org/10.1371/journal.pone.0156230
  36. Mendoza AR, Kiewnick S, Sikora RA. 2008. In vitro activity of Bacillus firmus against the burrowing nematode Radopholus similis, the root-knot nematode Meloidogyne incognita and the stem nematode Ditylenchus dipsaci. Biocontrol Sci. Technol. 18: 377-389. https://doi.org/10.1080/09583150801952143
  37. Shinya R, Aiuchia D, Kushida A, Tani M, Kuramochi K, Koike M. 2008. Effects of fungal culture filtrates of Verticillium lecanii (Lecanicillium spp.) hybrid strains on Heterodera glycines eggs and juveniles. J. Invertebr. Pathol. 97: 291-297. https://doi.org/10.1016/j.jip.2007.11.005
  38. Noy-Meir I. 1974. Desert ecosystems: higher trophic levels. Annu. Rev. Ecol. Syst. 5: 195-214. https://doi.org/10.1146/annurev.es.05.110174.001211