DOI QR코드

DOI QR Code

Joining Technology of Aluminum Alloys and Automotive Battery

알루미늄 합금 및 자동차 이차전지 접합

  • Yoon, Hong Kuk (Department of Materials Science and Engineering, University of Seoul) ;
  • Lee, Hyeonggyu (Department of Materials Science and Engineering, University of Seoul) ;
  • Moon, Dong Min (Department of Materials Science and Engineering, University of Seoul) ;
  • Ryu, Kwang Hyeon (Department of Materials Science and Engineering, University of Seoul) ;
  • Min, Yeong Un (Department of Materials Science and Engineering, University of Seoul) ;
  • Kim, Taewan (Department of Materials Science and Engineering, University of Seoul) ;
  • Jung, Jae Pil (Department of Materials Science and Engineering, University of Seoul)
  • 윤홍국 (서울시립대학교 신소재공학과) ;
  • 이형규 (서울시립대학교 신소재공학과) ;
  • 문동민 (서울시립대학교 신소재공학과) ;
  • 유광현 (서울시립대학교 신소재공학과) ;
  • 민영운 (서울시립대학교 신소재공학과) ;
  • 김태완 (서울시립대학교 신소재공학과) ;
  • 정재필 (서울시립대학교 신소재공학과)
  • Received : 2022.09.24
  • Accepted : 2022.09.30
  • Published : 2022.09.30

Abstract

Demand and interest in electric vehicles are increasing rapidly due to environmental issues. Improving the performance of electric vehicles requires the development of automotive batteries and battery joining technologies. Aluminum alloys are the most widely used metals in the electric vehicle industry, and aluminum bonding is used in all processes comprising automotive batteries. Therefore, in this paper, based on the characteristics of aluminum and aluminum alloys and knowledge of various aluminum joining technologies, the main and the next generation bonding technologies used in automotive battery are reviewed. It also explains the structure of automotive secondary battery cells and the integration order of 'cell-module-pack' where joining is used in the process, also various environmental conditions that must be considered when joining.

환경이슈로 인해 전기자동차에 대한 수요 및 관심이 급증하고 있다. 전기자동차의 성능 향상에는 핵심 부품인 자동차 배터리의 성능향상, 그리고 배터리 접합기술의 발전이 수반되어야 한다. 알루미늄 합금은 전기자동차 산업에서 가장 폭넓게 사용되는 금속이며, 알루미늄 접합은 전기자동차 이차전지를 구성하는 모든 공정에서 이용된다. 따라서 본 논문에서는 알루미늄, 알루미늄 합금의 특성과 다양한 알루미늄 접합 기술에 대한 지식을 기반으로, 차량용 이차전지에서 이용되는 주요한 접합기술과 차세대 접합기술을 검토한다. 또한 그 과정에서 접합이 이용되는 자동차 이차전지 셀의 구조, '셀-모듈-팩'의 집적 순서와, 접합 기술이 요구하는 다양한 환경적 조건들을 설명한다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0018010, 2022)

References

  1. C. M. Allen, "Laser Welding of Aluminum Alloys - Principle and Applications", TWI Report, 795 (2004).
  2. A. Sharma, J. P. Jung, "Influence of Various Additional Elements in Al based Filler Alloys for Automotive and Brazing Industry", J. Weld. Join., 33(5), 1 (2015). https://doi.org/10.5781/JWJ.2015.33.5.1
  3. A. Sharma, J. P. Jung, "Possibility of Al-Si Brazing Alloys for Industrial Microjoining Applications", J. Microelectron. Packag. Soc., 24(3), 35 (2017). https://doi.org/10.6117/kmeps.2017.24.1.035
  4. Y. H. Lee, D. S. Park, K. S. Park, J. K. Kim, "Aluminum Alloy Composition for Car Body and Casting Method", KR Patent 1020160036242, March 25, 2016.
  5. K. J. Kim, "Formability Evaluation of Automotive LightWeight Aluminum 5182 Alloys and Sandwich Panels", J. Korean Soc. Mech. Technol., 20(4), 389 (2018). https://doi.org/10.17958/ksmt.20.4.201808.389
  6. T. Sakurai, "The Latest Trends in Aluminum Alloy Sheets for Automotive Body Panels", Kobelco Technol. Rev., 28, 22 (2008).
  7. D. H. Jung, J. P. Jung, "Aluminum Alloys and Their Joining Methods", J. Microelectron. Packag. Soc., 25(2), 9 (2018).
  8. Y. C. Tzeng, Y. Chen, S. L. Lee, "Nondestructive tests on the effect of Mg content on the corrosion and mechanical properties of 5000 series aluminum alloys", J. Mater. Chem. Phys., 259, 1 (2021).
  9. R. Goswami, G. Spanos, P. S. Pao, R. L. Holtz, "Precipitation Behavior of the β phase in Al-5083", J. Mater. Sci. Eng., 527, 1089 (2010). https://doi.org/10.1016/j.msea.2009.10.007
  10. S. Niu, H. Dong, D. Zhao, X. Guo, G. Wang, "Microstructure and Properties of Lap Joint between Aluminum Alloy and Galvanized steel by CMT", J. Mater. Eng. Perf., 25(5), 1839 (2016). https://doi.org/10.1007/s11665-016-2035-2
  11. A. Demirkesen, "Investigation of the Effects of Using Aluminum Alloys in Electric Vehicle Production", International Marmara Science Congress (IMASCON), pp.1-7 (2020).
  12. A. J. Tomsatd, S. Thomsen, T. Borvik, O. S. Hopperstad, "Effects of constituent particle content on ductile fracture in isotropic and anisotropic 6000-series aluminum alloys", J. Mater. Sci. Eng., 820, 141420 (2021). https://doi.org/10.1016/j.msea.2021.141420
  13. S. B. Park, S. H. Kayani, K. J. Euh, E. H. Seo, H. Y. Kim, S. E. Park, B. N. Yadav, S. J. Park, H. K. Sung, I. D. Jung, "High Strength Aluminum Alloys Design via Explainable Artificial Intelligence", J. Alloys. Compd., 903, 163828 (2022). https://doi.org/10.1016/j.jallcom.2022.163828
  14. G. Ma, K. Yue, D. Liu, R. Wang, F. Niu, D. Wu, "Cracking susceptibility control of 7075 aluminum alloy in pulsed laser welding with filler strip", Opt. Laser Technol., 152, 108119 (2022). https://doi.org/10.1016/j.optlastec.2022.108119
  15. Y. Kim, K. Park, and S. Kwak, "Mechanical fastening and joining technologies to using multi mixed materials of car body", J. Weld. Join., 33(3), 12 (2015).
  16. M. Haghshenas, A. P. Gerlich, "Joining of automotive sheet materials by friction-based welding methods: A review", J. Eng. Sci. Technol, 21(1), 130 (2018).
  17. T. H. Kim, J. Suh, H. S. Kang, Y. S. Lee, C. D. Park, "Fatigue Assessment Using SPR and Adhesive on Dissimilar Materials", J. Korean Soc. Precision. Eng., 28(10), 1204 (2011).
  18. J. U. Jung, S. J. Kim, S. B. Lee, W. J. Sim, B. G. Kim, "Mechanical Properties of Hybrid Clinching Joints of Dissimilar Aluminum in Electric Vehicles", J. Korean. Soc. Manuf. Technol. Eng., 30(1), 68 (2021).
  19. D. H. Jung, "Light Material Convergence Technology Center", provided by Gyeongbuk Technopark, Unpublished Data
  20. J. P. Jung, "A Study on the Solderability of QFP Outer Lead Using Nd:YAG Laser", Metals and Materials International (MMI), 5(3), 317 (1999). https://doi.org/10.1007/BF03026085
  21. K. Fukami, K. Setoda, "Development of High-Efficiency MIG-Laser Hybrid Welding Technology for Aluminum Body", J. Korea. Foundry. Soc., 32(2), 109 (2012). https://doi.org/10.7777/jkfs.2012.32.2.109
  22. Y. S. Kim, S. C. Kil, "Recent Technological Tendency of Laser/Arc Hybrid Welding", J. Weld. Join., 31(2), 4 (2013).
  23. K. Fukami, K. Setoda, "Development of High-Efficiency MIG-Laser Hybrid Welding Technology" (in Japan), J. Japan. Weld. Soc., 80(7), 28, (2010).
  24. R. S. Coelho, A. Kostka, J. F. dos Santos, A. KaysserPyzalla, "Friction-stir dissimilar welding of aluminum alloy to high strength steels: Mechanical properties and their relation to microstructure", J. Mat. Sci. Eng., 556, 175, (2012). https://doi.org/10.1016/j.msea.2012.06.076
  25. P. Venkateswaran, A. P. Reynolds, "Factors affecting the properties of Friction Stir Welds between aluminum and magnesium alloys", J. Mater. Sci. Eng., 545, 26 (2012). https://doi.org/10.1016/j.msea.2012.02.069
  26. I. Galvao, D. Verdera, D. Gesto, A. Loureiro, D. M. Rodrigures, "Influence of aluminum alloy type on dissimilar friction stir lap welding of aluminum to copper", J. Mater. Process. Technol., 213, 1920 (2013). https://doi.org/10.1016/j.jmatprotec.2013.05.004
  27. K. Kotani, J. P. Jung, K. Ikeuchi, F. Masuda, "Interfacial Phases in Diffusion-Bonded Joints of Al-X Alloys (X=Mg,Si,Mn,Zn,Cu)", Quarterly J. Japan Weld. Soc., 15(2), 352 (1997). https://doi.org/10.2207/qjjws.15.352
  28. N. Saleema, D. K. Sarkar, R. W. Paynter, D. Gallant, M. Eskandarian, "A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications", Appl. Surf. Sci., 261, 742 (2012). https://doi.org/10.1016/j.apsusc.2012.08.091
  29. A. Das, D. Li, Williams, D. Greenwood, "Joining Technologies for Automotive Battery Systems Manufacturing", World Electr. Veh. J., 9(2), 1 (2018). https://doi.org/10.3390/wevj9010001
  30. A. Siddiq, E. Ghassemieh, "Thermomechanical Analyses of Ultrasonic Welding Process Using Thermal and Acoustic Softening Effects", Mech.. Mater., 40(12), 982 (2008). https://doi.org/10.1016/j.mechmat.2008.06.004
  31. T. H. Kim, J. H. Yum, J. S. J. Hu, J. P. Spicer, J. A. Abell, "Process Robustness of Single Lap Ultrasonic Welding of Thin, Dissimilar Materials", CIRP Annals-Manuf. Technol., 60(1), 17 (2011). https://doi.org/10.1016/j.cirp.2011.03.016
  32. S. S. Lee, T. H. Kim, S. J. Hu, W. W. Cai, J. A. Abell, J. Li, "Characterization of Joint Quality in Ultrasonic Welding of Battery Tabs", J. Manuf. Sci. Eng., 135(2), 1 (2013).
  33. A. Das, A. Barai, I. Masters and D. Williams, "Comparison of Tab-To-Busbar Ultrasonic Joints for Electric Vehicle Li-Ion Battery Applications", World Electr. Veh. J., 10(3), 1 (2019). https://doi.org/10.3390/wevj10010001
  34. A. Das, D. Li, D. Williams, D. Greenwood, "Weldability and Shear Strength Feasibility Study for Automotive Electric Vehicle Battery Tab Interconnects", J. Braz. Soc. Mech. Sci. Eng., 41(1), 41, (2019). https://doi.org/10.1007/s40430-018-1553-2
  35. J. Cobb, "Design Possibilities for the Chevy Bolt" Gm-Volt, (Sep 21, 2022) from https://www.gm-volt.com/threads/designpossibilities-for-the-chevy-bolt.337729/
  36. G. Shannon, "Improve Tab to Terminal Connections in Battery Pack Manufacturing", Amada Miyachi America Inc, (Sep 19, 2022) from https://www.batterypoweronline.com/articles/ improve-tab-to-terminal-connections-in-battery-pack-manufacturing/
  37. S. S. Lee, T. H. Kim, S. J. Hu, W. Cai, J. A. Abell, "Joining Technologies for Automotive Lithium-Ion Battery Manufacturing: A Review", Proceedings of the ASME 2010 International Manufacturing Science and Engineering Conference, 1, 541 (2010).
  38. "Jupiter Resistance Welding System for battery module welding," Amada Weld Tech, (Sep 21, 2022) from https://www. amadaweldtech.eu/products/resistance-welding/resistance-welding-systems/jupiter-resistance-welding-system-battery
  39. M. Park, Y. Hirata, "Research on Generation of Micro-Plasma Arc and Its Power Intensity", Weld. Int., 31(4), 284 (2017). https://doi.org/10.1080/09507116.2016.1223214
  40. Y. Hirata, "Pulsed Arc Welding", Weld. Int., 17, 98 (2003). https://doi.org/10.1533/wint.2003.3075
  41. H. Ji, M. Li, C. Wang, J. Guan, H. S. Bang, "Evolution of the Bond Interface During Ultrasonic Al-Si Wire Wedge Bonding Process", J. Mater. Process. Technol., 182(1-3), 202 (2007). https://doi.org/10.1016/j.jmatprotec.2006.07.033
  42. I. Lum, M. Mayer, Y. Zhou, "Footprint Study of Ultrasonic Wedge-Bonding with Aluminum Wire on Copper Substrate", J. Electron. Mater., 35, 433 (2006). https://doi.org/10.1007/BF02690530
  43. W. M. Steen and J. Mazumder, "Laser Material Processing", W.M. Steen, J. Mazumder, Eds., 4th ed, pp.199-249, Springer, London, UK, (2010).
  44. P. Schmalen, P. Plapper, W. Cai, "Process Robustness of Laser Braze-Welded Al/Cu Connectors". SAE Int. J. Altern. Power, 5(1), 195 (2016). https://doi.org/10.4271/2016-01-1198
  45. M. J. Brand, P. A. Schmidt, M. F. Zaeh, A. Jossen, "Welding Techniques for Battery Cells and Resulting Electrical Contact Resistances", J. Energy Storage, 1, 7 (2015). https://doi.org/10.1016/j.est.2015.04.001
  46. M. Bengoa, F. Gabler, "Innovative Laser Technology used in Electric Vehicle Manufacturing" (in Korean), J. Met. Weld., 4, (2020).
  47. R. Schafer, P. Pasquale, A. Elsen, "Material Hybrid Joining of Sheet Metals by Electromagnetic Pulse Technology", Key Eng. Mater., 473, 61 (2011). https://doi.org/10.4028/www.scientific.net/KEM.473.61
  48. M. Kashani, "Application of Magnetic Pulse Welding in Lithium-Ion Batteries Production", Tokyo Metropolitan College of Technology, (Feb. 7, 2014) from https://sites.google.com/ site/mehrdadkashani/magnetic-pulse-welding-for-lithium-ionbatteries-technology
  49. P. R. Bonenberger, "The First Snap-Fit Handbook", P. R. Bonenberger Eds., 3rd ed, pp.1-22, Hanser, Munich, Germany (2016).
  50. J. Varis, "Ensuring the Integrity in Clinching Process", J. Mater. Process. Technol., 174(1-3), 277 (2006). https://doi.org/10.1016/j.jmatprotec.2006.02.001