DOI QR코드

DOI QR Code

A study on the predictability of acoustic power distribution of English speech for English academic achievement in a Science Academy

과학영재학교 재학생 영어발화 주파수 대역별 음향 에너지 분포의 영어 성취도 예측성 연구

  • Park, Soon (Department of English Language Education, Seoul National University) ;
  • Ahn, Hyunkee (Department of English Language Education, Seoul National University)
  • 박순 (서울대학교 영어교육과) ;
  • 안현기 (서울대학교 영어교육과)
  • Received : 2022.08.17
  • Accepted : 2022.09.14
  • Published : 2022.09.30

Abstract

The average acoustic distribution of American English speakers was statistically compared with the English-speaking patterns of gifted students in a Science Academy in Korea. By analyzing speech recordings, the duration time of which is much longer than in previous studies, this research identified the degree of acoustic proximity between the two parties and the predictability of English academic achievement of gifted high school students. Long-term spectral acoustic power distribution vectors were obtained for 2,048 center frequencies in the range of 20 Hz to 20,000 Hz by applying an long-term average speech spectrum (LTASS) MATLAB code. Three more variables were statistically compared to discover additional indices that can predict future English academic achievement: the receptive vocabulary size test, the cumulative vocabulary scores of English formative assessment, and the English Speaking Proficiency Test scores. Linear regression and correlational analyses between the four variables showed that the receptive vocabulary size test and the low-frequency vocabulary formative assessments which require both lexical and domain-specific science background knowledge are relatively more significant variables than a basic suprasegmental level English fluency in the predictability of gifted students' academic achievement.

본 연구는 미국영어 화자의 평균적 음향 스펙트럼 분포를 확보한 후 과학영재학교 재학생의 영어발화 양상을 비교하여 상대적으로 우수한 지적 역량을 갖춘 우리나라 과학영재들의 초분절적 영어 유창성 양상을 규명하고, 그 근접성 정도가 영재학교 학생의 영어 과목 정기고사 성취도와 어떤 관계성을 갖는지 탐구하고자 진행되었다. 불과 수 초에서 수십 초에 불과한 음성녹음 데이터 위주로 분석을 시행했던 종래의 연구와 달리 총 4시간에 달하는 미국영어 원어민 화자(남성 15명, 여성 15명)의 음성녹음 자료를 MATLAB(R2022a; The Math Works) 코드로 분석하여 20 -20,000 Hz 주파수 범위 내의 대역별로 장기 스펙트럼 음향에너지 분포값을 확보했으며, 이를 기준으로 과학영재학교 1학년 신입생 80명의 녹음데이터 LTASS(long-term average speech spectrum) 분석 수치와 비교한 결과, 영어 과목 학기말고사의 학업성취도 수준이 상위 30% 이내인 학생들의 표본을 제외하고는 미국영어 음향에너지 분포와의 근접성이 통계적으로 유미하지 않다고 밝혀졌다. 영재학교 입학 후 영어 성취도를 예측하기 위한 지표를 발견하기 위해 수용성 어휘크기검사(receptive vocabulary size test), 학기 중 복수 회 실시한 영어 어휘 형성평가 퀴즈 누적 점수, 공인 영어말하기시험(English Speaking Proficiency Test, ESPT) 성취도를 추가 변량으로 하여 정기고사 성취도와의 상관관계 분석 및 각 변량 간 선형 회귀분석을 시행하였는데, 대개 유년시절 완성되는 영어 유창성을 측정하는 ESPT보다는, 1학기 및 2학기 초 실시한 수용성 어휘크기검사 및 수과학 분야 저빈도 어휘 위주 형성평가 점수와의 통계적 유의성이 월등히 높다는 사실이 관찰되었다. 따라서, 본 연구로부터 확보된 이론적 기반을 토대로 국내 영재학교에서는 발음교육보다 과학영재를 주요 대상으로 한 전문적 수준의 저빈도어휘 교육이 보다 효과적인 교수 요목이라 추정할 수 있다.

Keywords

Acknowledgement

본 연구는 서울대학교 2020년도 연구지원을 받아 수행되었음(과제번호: 700-20200053).

References

  1. Amlani, A. M., Punch, J. L., & Ching, T. Y. C. (2002). Methods and applications of the audibility index in hearing aid selection and fitting. Trends in Amplification, 6(3), 81-129. https://doi.org/10.1177/108471380200600302
  2. Baars, B. J., & Gage, N. M. (2010). Cognition, brain, and consciousness: Introduction to cognitive neuroscience (2nd ed.). Oxford, UK: Academic Press.
  3. Behrman, A. (2022). Speech and voice science (4th ed.). San Diego, CA: Plural Publishing.
  4. Bentler, R., Mueller, G., & Ricketts, T. A. (2016). Modern hearing aids: Verification, outcome measures, and follow-up. San Diego, CA: Plural Publishing.
  5. Byrne, D., Dillon, H., Tran, K., Arlinger, S., Wilbraham, K., Cox, R., Hagerman, B., ... Ludvigsen, C. (1994). An international comparison of long-term average speech spectra. The Journal of the Acoustical Society of America, 96(4), 2108-2120. https://doi.org/10.1121/1.410152
  6. Cho, S., & Munro, M. J. (2017, September). F0, long-term formants and LTAS in Korean-English bilinguals. Proceedings of the 31st General Meeting of the Phonetic Society of Japan (pp. 188-193). Tokyo, Japan.
  7. Cox, R. M., & Moore, J. N. (1988). Composite speech spectrum for hearing and gain prescriptions. Journal of Speech, Language, and Hearing Research, 31(1), 102-107. https://doi.org/10.1044/jshr.3101.102
  8. Coxhead, A., Nation, P., & Sim, D. (2015). Measuring the vocabulary size of native speakers of English in New Zealand secondary schools. New Zealand Journal of Educational Studies, 50(1), 121-135. https://doi.org/10.1007/s40841-015-0002-3
  9. Dunn, H. K., & White, S. D. (1940). Statistical measurements on conversational speech. The Journal of the Acoustical Society of America, 11(3), 278-288. https://doi.org/10.1121/1.1916034
  10. Eady, S. J. (1982). Differences in the F0 patterns of speech: Tone language versus stress language. Language and Speech, 25(1), 29-42. https://doi.org/10.1177/002383098202500103
  11. French, N. R., & Steinberg, J. C. (1947). Factors governing the intelligibility of speech sounds. The Journal of the Acoustical Society of America, 19(1), 90-119. https://doi.org/10.1121/1.1916407
  12. Jespersen, O. (1904). How to teach a foreign language. London, UK: George Allen & Unwin.
  13. Johnson, K. (2011). Acoustic and auditory phonetics (3rd ed.). Oxford, UK: Wiley-Blackwell.
  14. Keating, P., & Kuo, G. (2012). Comparison of speaking fundamental frequency in English and Mandarin. The Journal of the Acoustical Society of America, 132(2), 1050-1060. https://doi.org/10.1121/1.4730893
  15. Kuhl, P. K. (2004). Early language acquisition: Cracking the speech code. Nature Reviews Neuroscience, 5(11), 831-843. https://doi.org/10.1038/nrn1533
  16. Ladefoged, P., & Johnson, K. (2014). A course in phonetics (7th ed.). Stamford, CT: Cengage Learning.
  17. Li, F., Edwards, J., & Beckman, M. (2007, August). Spectral measures for sibilant fricatives of English, Japanese, and Mandarin Chinese. Proceedings of the XVIth International Congress of Phonetic Sciences (pp. 917-920). Saarbrucken, Germany.
  18. McLoughlin, I. V. (2016). Speech and audio processing: A MATLAB®-based approach.Cambridge, UK: Cambridge University Press.
  19. Mennen, I., Schaeffler, F., & Docherty, G. (2012). Cross-language differences in fundamental frequency range: A comparison of English and German. The Journal of the Acoustical Society of America, 131(3), 2249-2260. https://doi.org/10.1121/1.3681950
  20. Moon, C., Lagercrantz, H., & Kuhl, P. K. (2013). Language experienced in utero affects vowel perception after birth: A two-country study. Acta Paediatrica, 102(2), 156-160. https://doi.org/10.1111/apa.12098
  21. Nation, P., & Beglar, D. (2007). A vocabulary size test. The Language Teacher, 31(7), 9-13.
  22. Noh, H., & Lee, D. H. (2012). Cross-language identification of long-term average speech spectra in Korean and English: Toward a better understanding of the quantitative difference between two languages. Ear and Hearing, 33(3), 441-443. https://doi.org/10.1097/AUD.0b013e318234f03e
  23. Olsen, W. O., Hawkins, D. B., & Van Tasell, D. J. (1987). Representations of the long-term spectra of speech. Ear and Hearing, 8(5), 100S-108S. https://doi.org/10.1097/00003446-198710001-00008
  24. Plack, C. J. (2018). The sense of hearing (3rd ed.). New York, NY: Routledge.
  25. Schnupp, J., Nelken, I., & King, A. J. (2012). Auditory neuroscience: Making sense of sound. Cambridge, UK: MIT Press.
  26. The Math Works. (2022). MATLAB (version R2022a) [Computer software]. Retrieved from https://www.mathworks.com/
  27. Vasilescu, I., Dutrey, C., & Lamel, L. (2015, October). Large scale data based linguistic investigations using speech technology tools: The case of Romanian. Proceedings of the 2015 International Conference on Speech Technology and Human-Computer Dialogue (SpeD) (pp. 1-6). Bucharest, Romania.